
Discovery of a Novel Linear-in-k Spin k

blende solids the electron (heavy-hole) SS exhibits a cubic (linear) scaling with k, in 2D quantum wells,

the electron (heavy-hole) SS is currently believed to have a mostly linear (cubic) scaling. Such

expectations are based on using a small 3D envelope function basis set to describe 2D physics. By

treating instead the 2D system explicitly as a system in its own right, we discover a large linear scaling of
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is the Green’s function of a noninteracting Hamiltonian
H0. The latter is determined self-consistently so as to
minimize the difference, within the GW approximation,
between the many-body HGW and H0 [22]. (Thus,
exchange-correlation effects are included within the
QSGW theory, not LDA). This QSGW approach predicts
accurate energy bands for a wide range of materials [23],
including the Dresselhaus splitting in bulk GaAs [22,24].

The approach described above is computationally inten-
sive and can be readily applied only to rather small nano-
structures. Thus, for computational expediency, when
considering larger period quantum wells [e.g.,
ðGaAsÞn=ðAlAsÞn with n � 2], we will map both the
small-n behavior and the n ¼ 1 (bulk) QSGW solutions
of Eq. (1) to a screened pseudopotential Hamiltonian that
captures the former limits yet can be readily applied to
orders of magnitude larger systems (106 atoms were dem-
onstrated in Ref. [10]):
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For smaller periods (n �



the QW period is reduced signals the breakdown of the
model-Hamiltonian-thinking that neglects such mixing on
the ground that the energy splitting of hh0-lh0 must be
larger than that of hh0-hh1 for sufficient small periods [15].

Analysis of linear term.—The linear coefficient of 2D
hh0 SS can be written in terms of the weights in Eq. (3) in a
model of ‘‘mixing of decoupled states’’ as

�ð2DÞ
hh0 ¼ �wð2DÞ

hh0 ðHHÞ~�ð2DÞ
hh0 þ wð2DÞ

hh0 ðLHÞ~�ð2DÞ
lh0 þ � � � ; (4)

where ~�ð2DÞ
hh0 ð~�ð2DÞ

lh0 Þ is the contribution of a single bulk HH

(or LH) band to linear SS of 2D hh0 (1h0), which had been
derived by Rashba and Sherman [17] (the negative sign
accounts for band repulsion effect). The result of the first
two terms in Eq. (4) is shown as open squares in Fig. 3 and

is compared with the multiband-calculated �ð2DÞ
hh0 (solid cir-

cles). We see that the mixing of decoupled states [Eq. (4)]
gives a much better approximation to the full calculation
than the model Hamiltonian treating one decoupled band at
a time (open circles in Fig. 3) {see note (i) in supplemen-
tary material [27]}. Going from 3D to 2D entails simulta-
neously (i) a symmetry lowering (from Td to D2d), as well
as (ii) an increase in HH-LH splitting due to different
confinement of HH and LH. One might think that whereas
(i) will encourage a linear term (due to additional HH-LH
coupling at lower symmetry), effect (ii) might discourage it
because it presumably reduces HH-LH mixing which is
argued to be the cause of the linear term. The traditional
approach is to assume that the second effect dominates, and
the coupling effects will be small (can be treated perturba-


