Diagrammatic Separation of Different Crystal Structures of A₂BX₄ Compounds Without Energy Minimization: A Pseudopotential Orbital Radii Approach

By Xiuwen Zhang and Alex Zunger*

₂BX₄ family of compounds manifest a wide range of physical properties, including transparent conductivity, ferromagnetism, and superconductivity. A 98% successful diagrammatic separation of the 44 different crystal structures of 688 oxide A₂BX₄ compounds (96% for 266 oxide-only) is described by plotting the total radius of the A atom R_A versus the radius of the B atom R_B for many A₂BX₄ compounds of known structure types and seeking heuristically simple, straight boundaries in the R_A versus R_B plane that best separate the domains of different structure types. The radii are sums $\mathbf{R}_{A} = \mathbf{R}_{S}(A) + \mathbf{R}_{D}(A)$ of the quantum-mechanically calculated "orbital radii" $\mathbf{R}_{\rm s}(\mathbf{R}_{\rm p})$, rather than empirical radii or phenomenological electronegativity scales. These success rates using first-principles orbital radii uniformly exceed the success rates using classic radii. Such maps afford a quick guess of the crystal structure of a yet unmade A₂BX₄ compound by placing its atomic orbital radii on such maps and reading off its structure type.

1. Introduction

A₂BX₄ compounds^[1-6] constitute a centrally important group in inorganic solid state, manifesting a wide range of physical phenomena including insulation, transparent conductivity, ferromagnetism, ferroelectricity, and superconductivity. The 790 known A_2BX_4 compounds^[1–13] are distributed into 44 different crystal structure types as listed in Tables 1 and 2 (the Supporting Information lists the compounds belonging to each of the different structure types). This group of compounds exhibits significant chemical diversity, including chalcogen anions (X = O, S, Se, Te) as well as halides (X = F, Cl, Br, I), nitrides (X = N), cyanides (X = CN), and even nitrites (X = NO₂). The cations manifest cases where both A and B are main-group metals (A and B = Al, Mg, Ge, Sn) or cases where both A and B are transition elements (e.g., Ni₂TiO₄, V₂MnO₄) or cases where we have one of each (e.g., Al₂NiO₄) as well as rare-earth cationic species (e.g., Yb₂FeS₄). These compounds include cation-deficient structures (e.g., Adeficient A₃B₂X₈ or B-dificient A₄BX₈) as well as cases such as A₃B₂X₆ with cations in excess. The structures adopted by this

group are no less fascinating than their chemical constitution. This family of compounds includes, for example, the spinel structure-type (255 members), the Th₃P₄ structure-type (87 members), the Fe₂CaO₄ structure-type (78 members), the K₂SO₄ structure-type (69 members), the Cr₃S₄ structure-type (57 members), and the Olivine (Al₂BeO₄) structure-type (48 members). [14] The A₂BX₄ structure-types differ in crystal classes (cubic, orthorhombic, rhombohedral) and local environments ("motifs"). covering tetrahedral and octahedral as well as 5- and 7-fold coordination sites.

An outstanding challenge in structural inorganic chemistry^[2–4,6,15] and in solid-state physics^[16,17] has been to explain the distribution of the known A₂BX₄ compounds into different structure types. Two leading types of

approaches of predicting or rationalizing the crystal structure of a given A₂BX₄ compound have developed. In the deductive approach, one explicitly varies the structural degrees of freedom of an A₂BX₄ compound in search of a minimum of a given energy functional. In the inductive approach one offers a guess for the crystal structure of a given compound by analogy with the known structures of other compounds.

Most previous deductive approaches have focused on comparing a piece of the total (electronic + ionic) energy of different structures. The classical approach of crystal field stabilization energy (CFSE)^[17] attempts to correlate the type of the observed local atomic structural motif (octahedral vs. tetrahedral) with the excess orbital energy resulting from the splitting of the d-like atomic orbital energies by the nonspherical crystal field. This approach is applicable only to the cases where A or B is open shell transition metal. Even for this restriction the method was typically applied only to a subset of the known cases that do contain open shell A or B atoms, for example, the 44 cases in Reference [17]. The predictive power of the method is rather low: 46% success. Similarly, the approach of comparing point-ion Madelung energies of different structures was tested only for a small (18 compounds The A

ADVANCTION INCTION

www.afm-journal.de www.MaterialsViews.com

Table 1. Crystal structure types of A_2BX_4 compounds. The labels b1-b38 and d1, d3, and d9 of structures in the first column are taken from Wyckoff, ^[5] whereas labels S1-S3 indicate Y_2CrS_4 -type, Y_3S_4 -type, and Y_2CrS_4 -type structures, respectively. The notation "none" refers to cases where no known Pearson symbol nor mineral name exists.

Label	Prototype Compd.	Space Group	Pearson's Symbol/Mineral Name	No. of Compd.
b5	Al ₂ MgO ₄	$Fd\overline{3}m (O_h^7)$	cF56;Spinel	255
d9	Th_3P_4	I 4 3d(T ⁶ _d)	none	87
b9	Fe ₂ CaO ₄	Pnma(D _{2h} ¹⁶)	none	78
b11	K ₂ SO ₄	Pnma(D ¹⁶ _{2h})	none	69
d3	Cr ₃ S ₄	$C2/m(C_{2h}^{3})$	mC14	57
b10	Al_2BeO_4	Pnma(D ¹⁶ _{2h})	Olivine	48
b1	K_2MgF_4	I4/mmm(D _{4h} ¹⁷)	none	41
b6	Mn_3O_4	$I4_1/amd(D_{4h}^{19})$	tl28;Hausmanite; distorted Spinel	27
b4	Ag_2HgI_4	$P\overline{4}2m(D_{2d}^{1})$	tl14;Thiogallate	24
b33	Li ₂ WO ₄	$R\overline{3}(C_{3i}^2)$	Phenakite	14
S1	Y ₂ CrS ₄	$Pca2_{1}(C_{2v}^{5})$	none	14
S2	Yb_3S_4	Pnma(D ¹⁶ _{2h})	none	13
d1	Pb ₃ O ₄	$P4_2/mbc(D_{4h}^{13})$	none	9
b21	Al_2BaO_4	P6 ₃ 22(D ₆)	none	7
S3	Sr ₂ PbO ₄	Pbam(D_{2h}^9)	none	6
b18	Na_2SO_4	$Fddd(D_{2h}^{24})$	Thenardite	4
b2	K ₂ PtCI ₄	$P4/mmm(D_{4h}^1)$	none	3
b3	$K_2Pd(NO_2)_4$	$P2_1/c(C_{2h}^5)$	none	2
b7	Cr ₂ CuO ₄	$\overline{142d}(D_{2d}^{12})$	distorted Spinel	2
b13	KHSO ₄	Pbca(D _{2h} ¹⁵)	none	2
b20	LiKSO ₄	P6 ₃ (C ₆)	none	2
b22	KNaSO ₄	$P\overline{3}m1(D_{3d}^{3})$	Aphthitalite	2

Table 2. Crystal structure types of A

competing structures from empirically parametrized interatomic potential functions. This approach too, relies on selecting certain pieces of the full ion + electron total energy and on specific, approximate analytic forms of the potential terms. This approach has been applied $^{[20]}$ to a very restricted number of cases (54 compounds), predicting correctly 45 compounds (or 83% success).

Instead of minimizing pre-selected pieces of the full total-energy, one might of course attempt to minimize an all-inclusive total energy expression, such as the density-functional and Hartree–Fock expressions. The density-functional calculations of the total energy were done by Marinelli et al. for $\rm In_2MgS_4$, $^{\rm [16]}$ Warren et al. and Thibaudeau et al. for $\rm Al_2MgO_4$, $^{\rm [21]}$ and Wei et al. for 18 spinel compounds. $^{\rm [22]}$ The Hartree–Fock calculations of the total energy were done by Catti et al. for $\rm M_2CrO_4\,(M=Mg,Mn,Zn)$ and Mitchell et al. for $\rm M_2ZnO_4\,(M=Al,Fe)$. Seko et al. used the cluster expansion method combined with density-functional calculations to investigate the ground state structures of 6 spinel compounds. $^{\rm [24]}$ This successful deductive approach, however, is not easily applicable to large databases, works on a case by case basis, and requires optimization of the total energy with respect to $^{\rm 1/4}$

the conflict with the orbital radii approach is also not necessarily a contradiction. Third, ten cases are true errors. Cd_2PbO_4 , Cd_2PtO_4 , Cd_2SnO_4 , Ga_2PbO_4 , Pb_3O_4 , Tl_2CrO_4 , Sc_2MgO_4 , and Ti_2NaO_4 were determined experimentally to exist in S3, $^{[6]}S3$, $^{[6]}S3$, $^{[13]}b21$, $^{[5]}d1$, $^{[5]}b11$, $^{[5]}b9$, $^{[12]}$ and b9, $^{[12]}$ structures (see Supporting Information), respectively, but appear in the map in the spinel (b5) region. As_2NiO_4 has the d1 structure, $^{[5]}$ but is placed in the map in the region of b33. Ni_2RhS_4 is reported to exist in the spinel structure, $^{[6]}$ while its orbital radii place it inside the d3 region. The spinel and d3 structures (see Figs. S1 and S5 in the Supporting Information) are closely related: both have their 2/3 cations octahedrally coordinated; their anion sub-lattices (fcc in6lb-308.2(and)-308.9hcapinboth

The ompoundis thets in the orbital radii structur-e mans aboaveF316.7(igs.)3902.9d1 and myd bve acture)66.8.9(ypegs.)616453(F320.9o)0(r.)6174.8(eamplre,)]TJ0-1.2266TD-0.2101TcCas

-

2

ADWAIGHT IALE UNCTION

www.afm-journal.de

1.0

A and B ions, $^{[37]}$ including every compound that can be included. There are 40 compounds that are included in orbital radii maps but cannot be included in Shannon's radii maps (see Supporting Information). The 5 compounds containing U (not included in orbital radii maps) are included in Shannon's radii maps. The success rates of the structure-field maps and cation-distribution map using Shannon's crystal radii $^{[37]}$ (see Figs. S10 and S11 in the Supporting Information) are 92% and 74% compared to the success rates of the orbital radii maps at 98% and 96%, respectively. Shannon's radii $^{[37]}$ were revised slightly from Shannon–Prewitt crystal radii $^{[34]}$ in 1976. Before that, Muller and Roy $^{[6]}$ had

