II-VI oxides phase separate whereas the corresponding carbonates order: The stabilizing role of anionic groups

 The property of the property o

III. FORMATION ENTHALPIES OF RANDOM AND ORDERED CaO-MgO AND CaCO₃-MgCO₃

 $\frac{\Delta}{A} = \frac{A}{A} = \frac{A}$

V. DECORATION OF METAL SUBLATTICE BY DIFFERENT CATIONS AT FIXED VOLUME: ΔE_{CE}

 $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$ $\Delta E = \begin{pmatrix} \Delta E \\ () \end{pmatrix}$

VI. CELL-INTERNAL RELAXATION: $\Delta E_{\rm SR}$

A. Oxides

we will be a superficient to the superficient

 $\Delta E_{c}(\cdot,\cdot)$ is from the second of the se

VII. CONCLUSIONS

 ΔE c ΔE Δ

ACKNOWLEDGMENTS

The same of the sa

 $27e_{\mu}$ ((a_{μ})) $27e_{\mu}$ ((a_{μ}))

31e
38e
38e
37e
37e
37e
37e of 65e, (...,)