Adaptive Crystal Structures: CuAu and NiPt

structures, appearing at compositions x = 0, 0.25, 0.5,
0.75, and 1. However, in 1973, Anderson [9] noted ex-
perimentally the existence of a group of crystalline ma-
terials where, “within certain composition limits, every
possible composition can attain a unique, fully ordered
structure without defects.”” Furthermore, such “infinitely
adaptive structures” had a multiplicity of discrete higher
energy, fully ordered structures which were separated
energetically by only a small amount, for any one com-
position. An example of the then recognized [9] infinitely



D stands for the number of equivalent clusters per lattice



Cu,Aus, CuAu,, NiPt; as 412, 516, 575, 587, 597, and
371 K, respectively.

Adaptive structures.—Figure 1 shows that in the heavy
metal rich compositions there is a (quasi)continuum [21]
of ordered structures, separated at each composition by
only a vanishingly small energy difference from the next
excited configurations. Examining the crystal structures
at those compositions, we find that they are all made from
(001) stacking of two simple fcc lattice planes, denoted in



the (001) direction is particularly soft [Fig. 3(b)], thus
offering a clear structural selectivity. On the other hand,
the chemical energy is less selective here: The calculated
Cu-Au bond strength of 179 kJ/mol (cohesive energy per
bond obtained by adding the theoretical compound heat
of formation to the experimental heat of atomization of
the elemental solids [24]) is rather similar to the Cu-Cu or
Au-Au bond strength (168 kJ/mol and 184 kJ/mol for
Cu-Cu and Au-Au, respectively). Therefore, there is no
large chemical penalty for forming planes of pure Cu-Cu
or pure Au-Au bonds without cross Cu-Au bonds, yet
there is a substantial gain in strain energy [particularly
for (001) stacking] in doing so. Thus, the ground state
structures are based on (001) stacking of type-l planes
(Fig. 2), consisting of pure Cu and pure Au. The reason
that the stable repeat unit consists of a subunit of
(lew1(law)1 = L1, layered with n monolayers of Au is
that this particular structural motif offers exceptionally
low (001) strain: the L1, structure of CuAu has tetragonal
symmetry, permitting its (001) tetragonal c¢/a ratio to
deviate from 1. Our calculations show that ¢/a = 0.915.
This (001) shrinkage is accompanied (via the volume
conservation principle) by a significant expansion of the
in-plane lattice constant, beyond the 50%-50% (\egard)
value. This in-plane expansion gives aj-piane that is nearly
(within 3.2%) lattice matched with pure fcc Au. Thus,
(001) stacking of Au on L1, CuAu costs only little strain
energy. This suggests that the Au-rich alloy will have
particularly low interfacial energies, with potential im-
plications on microstructural morphology.

In the NiPt system one can draw a similar conclu-
sion about the stacking of the planes along the (001)
direction, since the strain energy of NiPt is very similar
to that in CuAu; i.e., strain energy along the (001) direc-
tion at the Pt-rich region is much softer with respect to
the other high symmetric directions. Therefore, as in the
CuAu system one expects to see adaptive structures with
(001) orientation at the Pt-rich region. However, contrary
to the CuAu system, the Ni-Pt bond strength (calcu-
lated at 252 kJ/mol) is stronger than the Ni-Ni bond
(214 kJ/mol [24]), which means the pure Ni atomic
planes are unfavorable. But the pure Pt atomic planes
are energetically favorable because of the strong Pt-Pt
bonds (282 kJ/mol [24]). Consequently, adaptive struc-
tures at the Pt-rich side prefer to have mixed Ni-Pt (001)
planes layered with pure Pt planes, but without pure
Ni planes.

We conclude that fcc adaptive structures of the sort
discovered here must contain an fcc element whose bcc
energy is not too high above fcc (Cu, Ni), and a larger
element (Pt, Au) that acts to expand the smaller element
into the regime of its transition to bcc, thus creating
asymmetric (001) strain softness. We call for experimen-
tal testing of this novel concept of phase ordering.

This work is supported by the U.S. Department of En-
ergy, SC-BES-OER Grant No. DE-AC36-98-G010337.
We thank V. Ozolins and C. Wolverton for discussions.

(1]
(2]
(3]

(4]

(5]

(6]
(7]

(8]
(9]

[10]
[11]

[12]

D. de Fontaine and J. Kulik, Acta Metall. Mater. 33, 145
(1985).

W. B. Pearson, The Crystal Chemistry and Physics of
Metals and Alloys (Wiley Interscience, New York, 1972).
R. Hultgren, P. D. Desai, D.T. Hawkins, M. Gleiser, and
K. Kelley, Selected Values of the Thermodynamic
Properties of Binary Alloys (American Society for
Metals, Metals Park, OH, 1973).

D. M. Berley, in Phase Transition and Critical Phe-
nomena, edited by C. Domb and M.S. Green
(Academic Press, London, 1972), p. 329.

D. F. Styer, M. K. Phani, and J. L. Lebowitz, Phys. Rev. B
34, 3361 (1986).

K. Binder, Phys. Rev. Lett. 45, 811 (1980).

J. Kanamori and Y. Kakehashi, J. Phys. (Paris), Collog.
38, C7-274 (1977).

F. Ducastelle, Order and Phase Stability in Alloys
(North-Holland, Amsterdam, 1991), Chap. 3.

J.S. Anderson, J. Chem. Soc. Dalton Trans. 10, 1107
(1973).

C. Kittel, Solid State Commun. 25, 519 (1978).

An infinite set of ground states is also predicted near x =
0.5 on a honeycomb 2D lattice with three nearest neigh-
bors pair interactions that satisfy certain inequalities.
See J. Kanamori, J. Phys. Soc. Jpn. 53, 250 (1984).

C. Sigli and J. M. Sanchez, Acta Metall. 33, 1097 (1985).



