


tion, TEM studies, and neutron scattering stutfie® give
values from 318-328 °C for compositions of about 37—-40 %
Zn. (Assessing the coherent phase boundary via aging at low
temperatures and reheating to find the reversion temperature
is problematic due to the complex precipitation kinetics at
low temperatured) Decomposition of the solid solution at
temperatures below the coherent phase boundary gives rise
to a series of coherent fcc precipitate shapes. The precipita-
tion sequence involves spherical Guinier-Prest®P)
zones'?! coherent ellipsoidal precipitates, and partially co-
herent platelet§with coherency along111)].22-2¢

The decomposition of Al-rich ACu; , solid solutions
also produces coherent GP zones. In fact, Al-Cu alloys pro-
vide the textbook example of the formation of GP zones in
supersaturated solid solutioffs?®?The specifics of the pre-
cipitation sequence are somewhat controversial, but it is gen-
erally agreed that coherent platelets of Cu form al¢h@p
directions?® Two types of GP zones have been reported, the
so-called GP1 and GP2 zor@There have been many mea-
surements of the coherent phase boundaries for GP1 and
GP2 zonegsee Ref. 75, and references theyeimich show
a maximum temperature of roughly 200 °C at the solubility
limit of 2% Cu. Recently, the mixed-space cluster expansion
technique used here has been applied to Al-Cu alloys and the
resulting coherent phase boundaries and precipitates
predictec?® This theoretical approach was shown to provide
predictions for the coherent precipitate shapes of GP1 and
GP2, and also provides an explanation for the GP1-GP2 tran-
sition observed in terms of a size-dependent transition of the
equilibrium precipitate shape.

Here, we construct a mixed-space cluster expansion for
Al-Zn alloys using first-principles total energy calculations.
Then, we compare the resulting phase stability of Al-Zn with
the previous calculations of Al-CiRef. 29 in terms of their
zero-temperature superlattice energies and ground states, as
well as thermodynamic properties such as mixing enthalpies,
coherent phase boundaries, and short-range order in the solid
solutions. We show how the instability of fcc-Zn is, to a
large extent, responsible for many of the thermodynamic
properties of Al-Zn, and is hence responsible for the contrast
between many properties of Al-Zn and Al-Cu. All of these
results are compared with experimental observations, where
available. The calculations described here create a basis for a
detailed theoretical study of precipitation in Al-Zn.

II. INSTABILITY OF ELEMENTAL FCC ZN

The constituents of the two considered alloys Cu, Al, and
Zn, have different structural preferences: while Cu and Al
crystallize in an fcc lattice, Zn is hcp. Confronted with the
problem of describing the fcc solid solution in the,&h;
alloy system we have to inquire about the stability and elas-
tic properties of this unusual phase: fcc-Zn. Figure 1 com-
pares LDA-calculated total energies of volume-conserving



many times beford'~3> However, the most common ex-
ample is fcc-stable elements.g., Cy which are unstable in
the bcc structure, or vice verdahe 100-type distortion con-
nects the fcc and bcc structures via the Bain path, and the
instability of bcc Cu can be seen from the 100 distortion in



wherea,(x) is the lattice constant that minimizesECY at
each x. Figure 3 presents the constituent strain energy for
AlL,Cu,_, and AlZn;_, as function of the Al composition
for different directions! We see thati) all strain energies
are about an order of magnitude smaller for Al-Zn than for
Al-Cu. In fact, the strain energy in &Zn, _, does not exceed

a value of 5 meV/atom for any directiofii) The strain en-
ergies of the AlzZn,_, alloy are characterized by the exis-
tence of an elastically soffl11) direction and an elastically
hard (100 direction. In contrast, for ACu,_, the (111) di-
rection is the hardest up t0=0.70, while(100 is the elas-
tically softest direction between 25 to 100 % Al. The differ-
ent directional strain behavior of &n; , and ALCu;
alloys can be illustrated by a three-dimensional parametriza-
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TABLE II. Cluster expansion fit for Al-Cusee Table | for details

Average fit error (CE, 41 structures): 8.24 meV
Average prediction error (0 predictions): —
Maximum error: 41.84 meV

Direction
Stoich. T Al (100) (110) (111) (201) (311) others others
Cu 0.0 Jee
direct: 0.0
CE: -4.4
AlCusg 0.111 NigNbs
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FIG. 5. Fully relaxed LDA formation enthalpieAH; for all
considered AlZn, and Al,Cu, ordered compounds sorted by super-
lattice direction. While the AiZn, compounds have exclusively
positive formation enthalpies, the /&u, compounds possess
nearly all negative formation enthalpies.

layers of Zr. The calculated\H; are given in Tables | and
[l and plotted in Fig. 5. We note the following:

(i) While for Al,Cu, compounds nearly all formation en-
thalpies are negative, they are exclusively positive for—
Al,Zn,. This already characterizes Al-Cu as ordering sys e _ ; |

b : .~contribution to the formation enthalpies shown in Fig. 6
tem, and Al-Zn as phase separating system. The formatiof P 9. 5

AlCY,

enthalpies  of compounds range between

AlZn

FIG. 6. Fully relaxed LDA formation enthalpieAH; for
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—222.5 meV/atom tot+ 3.2 meV/atom, while for AjZn,
they range only between +1.8 meV/atom to
+35.1 meV/atom.

(i) Formation enthalpies for AZn, compounds with
layer ordering along thél11) direction are smallest. This is
evident in Fig. 6 which shows all directly calculated forma-
tion enthalpies of AlZn, compounds and can be interpreted
as a consequence of the unusually low constituent strain en-
ergy.

(iii) The formation enthalpies of Al-Z(1.10) superlattices
are relatively large, even larger than along (%60 super-
lattices, although Al-Zn also appears to be very soft along
(110 (see Fig. 3.

To understand the trends in formation enthalpies we will
use the following rougliand admittedly, nonuniquelecom-
position: We describe the formation enthalpy of any struc-
ture as the sum of the constituent strain energy of(Egand
the relaxed “chemical energy” including all other contribu-
tions,

AH{(X,0)=AEZY ) + AE hen{ X, 7). (4)

The partitioning of Eq(4) leads to the conclusion that for
Al,Zn, compoundsAEgpey, On the average must be more
positive for structures ordered alofgl0) than(111). Tak-

ing all directly calculated formation enthalpies of ordered
compounds alongl1l) and(110) into account we get aver-
age values of AEgen{111)=6.6 meV/atom and
AEhen(110)=24.5 meV/atom. The averages of the con-
stituent strain energy for considered superlattices amount to
AEZY0)(111)=1.1 meV/atom and AEgYo)(110)
1.6 meV/atom. In other words, for(111) compounds”
even the very soft strain energy gives a fractionally larger

while the fractional contribution of strain to formation en-
thalpies along110 is relatively small.

D. A detour: The need to use geometrically equivalenk
points in evaluating formation enthalpies

The small formation enthalpies in 4dn, demand ex-
tremely careful convergence. In addition to convergence
with respect to the basis set, one needs to assure convergence
with respect tdk points. Considering Ed3), we see that one
needs to converge therepresentation for a compourdB
as well as for the elemental constitueAtsindB. The stan-
dard way of accomplishing this is to increase the number of
k points in all 3 systems until convergence is obtained. This
can be done using any method of Brillouin zone sampling,
e.g., Chadi-Cohéti or Monkhorst-Pack® The disadvantage
of this approach is that it requiresbsolute kpoint conver-
gence forA, B and separately, foA,B,. An alternative
method is to take advantage ofelative k point
convergencé!

The idea is to sample the Brillouin zoreguivalentlyfor
A, B and for A,B,. This could be done by considering
ApAq, BpBg, and A B, as isostructural solids and sample
the Brillouin zone of all equally. Then, any relatikepoint
sampling error cancels out. This is called theethod of
equivalent k points? In practice, we do not have to calculate

Al,Zn, compounds: The smallest values are found for compoundshe total energies oA,A, and BB, but we can calculate

which are superlattices along tli€11) direction.

instead the energies éfandB, at suitably folded-irk points.



For comparison three epitaxial energies as well as threx12X12 while using 1&18x18 gives +2.0 and
formation enthalpies were calculated usMg NX N regular  +2.8 meV/atom, respectively. As a result, a<IP2X 12 set
(Monkhorst-Pack and equivalenk points for N=8,10,12.  of k points would erroneously predict the Al-Zn system to be
Here, NXNXN is the number ofk points in the first ordering-type along(11l), but phase separating along all
Brillouin-zone before reduction by symmetry. The chosenother directions. Thisk-point problem is connected to un-
epitaxial systems are Zh00) and Zn (111) relaxed ata  usual small formation enthalpies of ,&n; . It should be
=7.50 a.u. 8,=7.23 a.u.) as well as AL10) relaxed at mentioned that the problem described only appears for com-
a=7.33 a.u. @,=7.50 a.u.). The three ordered com- pounds with equivalent superlattices alofill), i.e., for
pounds are_1,, which does not allow any cell-vector dis- compounds showing large cell-vector distortions and atomic
tortions, as well as 1, andL1, allowing distortions along movements. Formation enthalpies calculated for other com-
the c-axes in thg100 and (111) directions, respectively. pounds do not show such a high sensitivity to the number of
The results are shown in Table Ill: It can be seen that thé& points.

AH; values for equivalent sets converge much faster than

using regular sets. Indeed, even axi®X 10 regular mesh IV. THERMODYNAMIC QUANTITIES

k-point set for most casggxceptL 1,) is not sufficient. For o ) ]
equivalentk-points a set of 18 10x 10 k points represents To calculate finite temperature, thermodynamic properties

the smallest acceptable choice especially for distortiondVith first principles accuracy, pair- and multibody effective
along(111). cluster interactions are needed as input for Monte Carlo

To determine the minimum number of equivaléroints ~ Simulations. These interactions are generated by use of a
needed we calculatkH; for superlattices alongl11) direc-  Mixed-space cluster expansion with directly calculated LDA
tion. The reason for selecting this ordering direction is thaStrain energies and formation enthalpies as input. We next
atomic movements alongl1l) are very large due to the describe the construction of the cluster expansion for Al-Cu
unusual epitaxial softness along this direction. These tes@Nd Al-Zn.

(Table V) show that sometimes evenX22X 12 equivalent

k points are not sufficient for convergence: While for the A. The mixed space cluster expansion for Al-Zn and Al-Cu
L1, L1,, andV2 structures, the use of>88x8 k points It has been demonstrafd**?°that amixed-space cluster
already leads to stable results, for thg, V3, V6, andV8 expansiohft?

structures this is definitely not the case. For examjld

for a2 andV6 are —4.1 and —9.9 meV/atom using 12






energy of the configurationally-random state. The composi-
tion dependence dfH (random) is given in the lower part of
Fig. 8. The difference between the results of Figp)&nd
those in Fig. &) are due to the energetic effect of short-
range order in the solid solution. For the phase separating
alloy system AJZn; , all values are positive exhibiting a
maximum around 40% Zn, while for the ordering system
AlLCu, _, all values are negative exhibiting a minimum
around 30% Cu. The mixing enthalpy of the,&h; _, ran-
dom alloy at the maximum amounts t624 meV/atom,
while the mixing enthalpy of the ACu, _, random alloy at
the minimum amounts to-130 meV/atom. These calcu-
lated enthalpiegwithout the effects of short-range orgler
for the fcc solid solution relative to fcc constituents, i.e., themay be compared with measured vaffes for disordered
fcc-hcp energy difference for Zn was already subtractedCu-rich alloys which are also shown in Fig. 8. As can be
Our calculated first-principles  mixing  enthalpy seen, the agreement is very good, especially, if we consider
AHpz0(%,643 K) and the phenomenological fit to experi- that the theoretical values are for the fully random alloy and
ment of an Mey® are compared in Fig.(8). The two curves a discussion of the cited experimental investigations by
agree very well: Both show a maximum around 40% Zn withHultgren'® gives an error estimate of 30 meV/atom for
a corresponding mixing enthalpy of about 20 meV/atom. Athese measured values.
comparison to individual experimental studies of the fcc The limited solubility of Cu in Al means that it is not
phase appears to be very difficult, because their results diffggossible to compare the entire curve in Fig. 8 with experi-
profoundly: For example, while calometric studies of Wittig ment, but rather only the Al-rich dilute limit. The dilute heat
and Schéfl®® (T=643 K) and Connel and Downfg (T  of solution for Cu in Al can be computed from our cluster
=637 K) lead to a maximum in the enthalpy of mixing at expansion approach: The calculated value for aguflug o1
about 25% Zn, electromagnetic field studies by Hilliard,alloy is AHgy o= —50 meV/Cu atom for the random al-
Averbach, and Cohéh (T=653 K) find a maximum loy, and AHuiof T=700 K)=—70 meV/Cu atom when
around 60% Zn. To our knowledge these discrepancies fashort-range order is taken into account. Both of these values
the thermodynamic properties of the fcc solid solution areare extremely smallin magnitudé compared to the forma-
not yet clarified; hence, future experimental studies would b¢ion enthalpies of ordered Al-rich compounds, e.g.,
desirable. AH(Z1)=—-96.2 meV/ators —385 meV/Cu atom, nearly
We also have calculated the mixing enthalpy of thean order of magnitude larger than the heat of solution. The
configurationally-random alloy: Monte Carlo simulations smallness of the heat of solution is due to the asymmetric
were performed for extremely high temperatufesg., T  shape of the random alloy energy in Fig. 8. The curvature of
=50000 K) where almost all atomic exchanges of the Me-the random alloy energy changes sign and the mixing energy
tropolis algorithm are accepted. This simulation samples theearly becomes positive for Al-rich alloys. Interestingly, this
configuration space in an unbiased manner, and gives the









One might be surprised by the clustering tendency of the
solid solution since almost all the calculated formation en-
thalpies for ordered compound$able 1) and mixing ener-
gies of random alloyg
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APPENDIX: PSEUDOPOTENTIAL AND LAPW METHODS

The full-potential linearized augmented plane-wave
method (LAPW) (Ref. 64 was applied to calculate forma-
tion enthalpies for AICu, compounds, while a plane-wave
code for pseudopotential®P was applied to calculate first
principles total energies for AZn,. In both approaches the
exchange correlation term was always treated by the local
density approximation of Ceperley and Alffein the param-
etrization of Perdew and Zung®t.

In the plane-wave pseudopotential calculatjdhe kinetic
energy and the implementation of Kleinman-Bylarfdeon-
local potentials are performed in reciprocal space, the local
potential and exchange correlation energy are calculated in
real space. For a given occupied screened potential, the oc-
cupied eigenstates at differektpoints are calculated using
the conjugate gradient method. The conjugate gradient line
minimization is performed one state at a time. Since the in-
put potential is fixed during the conjugate gradient process,
analytic energy curves can be used to determine the energy
minimum in the line minimization. At any given time, only
the wave functions of on& point need to be stored in the
memory, while all other wave functions are stored on disk.
This method allows calculations with a large numberkof
points as required in our study. As in the conventional
approact?® an outside loop is provided to converge the self-
consistent field. While Kerker's approdchs used to mix
the input and output screened potential differently at differ-
ent reciprocal vector components, Pulay’s algorithris
used to take advantage of all the previous input-output po-
tential pairs to determine the optimal input potential for the
next iteration.

The atomic pseudopotential®P were generated using
the scheme of Troullier and Martiftswhereby 3 electrons
of Cu and Zn were treated as valence electrons. The cutoff
radii used fors, p, and d pseudopotentials areg(Al)
=22 A, ry(A)=20 A, r{(Cu)=1.8 A, r,(Cu)
=23 A, rg(Cu=15 A, ry(zZn)=2.0 A, r,(Zn)
=26 A, ry(Zn)=2.0 A. Atomic PP and all-electron ei-
genvalues agree for all elements better than 0.07 meV. To
guarantee stability of the PP a number of transferability tests
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