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Abstract  

Empirical pseudopotential plane wave theory is used to study 
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mation (LDA) results. Unlike the case with the LDA, 
we are able to obtain experimentally sensible excita- 
tion energies. The 
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decreases, this must imply a greater role of  surface 
effects on the electronic structure. This is true only if 
the wavefunction has an amplitude on the surface 
atoms. We test this next. 

Shown in Fig. 2a,b are the wavefunction square 
of  the CBM and VBM of the rectangular quantum 
box with d = 34.1 A (Nsi = 1035 atoms). The VBM 
and CBM states are found to be localized in the 
interior of  the quantum dot, with zero amplitude on 
the surface. Because of  this and the fact that hydro- 
gen potential is of  very short range, we find that, as 
long as all dangling bonds are passivated, the details 
of  the surface passivating atoms play little direct role 
in the determination of  the wavefunctions, hence the 
band gaps and the oscillator strengths. 

2.3. Comparison of  the band gaps with previous 
calculations 

Fig. 1 compares the results of  two model calcula- 
tions with our direct ( 'exact ' )  calculations. These 
models includes the multiband effective mass ap- 

Fig. 2. Wavefunction square contour plots of the (110)×(130)× 
(001) rectangular quantum box with d = 34.1 A and Nsi = 1035 
viewed from the [001] direction. (a) The CBM wavefunction 
square summed along the z direction. (b) The VBM wavefunction 
square plotted on the z = d z/2 cross section. The crossed circles 
in (b) denote the positions of the silicon atoms on that plane. 

proximation (EMA) of  Takagahara and Takeda [6] 
and the model of  Rama Krishna and Friesner (RKF) 
[71. 

2.3.1. Comparison with the effective mass method 
As could be seen in Fig. 2, the VBM and CBM 

states found in our direct calculations are not surface 
states, hence a comparison with the results of  the 
(surfaceless) EMA is warranted. Our 'exact '  calcula- 
tion result of  Eq. (4) gives a 1 / d  1"37 size scaling, 
while the effective mass model predicts a l / d  2 
scaling. Hence, the parabolic dispersion assumed in 
the EMA is inadequate in the range of quantum dot 
sizes studied here (d  < 40 A), despite the fact that 
mnltiband coupling is correctly included in this EMA 
calculation. Indeed, the effective mass approximation 
(which includes only kinetic energy effects neglect- 
ing explicit potential energy within the dot) exagger- 
ates considerably the increase of  band gap [AEg(d)  
= Eg(d) - E bulk ] with reduced size. Replacing in the 
EMA calculation the infinite wall by a finite barrier 
reduces AEg(d)  and softens the 1 / d  2 scaling. Solv- 
ing the EMA equation for a finite barrier of  height 4 
eV and using an effective mass m* = 0.2m gives a 
10% lower AEg(d)  for d = 40 A and a 15% lower 
AEg(d) for d = 25 A. This reduces the EMA error 
relative to our direct calculations by 20% and 30% 

o 

for d = 40 and 25 A, respectively. The remaining, 
bigger part of  the error must come from (i) the EMA 
Hamiltonian itself, i.e, from the assumption of  
parabolic dispersion, and (ii) possible nonabruptness 
of  the potential well. 

Zunger et. al. [8] have extended the comparison of  
(single band) effective mass vs. pseudopotential 
method to Si wires and films. The results are shown 
in Fig. 3. We see that the EMA overestimates signif- 
icantly the quantum confinement shift A E i ( d ) =  
E l ( d ) -  Ei(bulk) and that the order of  the EMA 
errors is ~AE(box) > ~AE(wire) > ~AE(film) (Fig. 
3b). Note that the error is smallest for 2D films (in 
vacuum), and is probably still smaller in 2D quantum 
wells (embedded in a barrier). This explains partly 
the success of  the EMA in quantum wells, but warns 
against the hope that similar success will be carried 
over to wire and dots. Note also from Fig. 3a that the 
size dependence of  the quantum confinement is the 
weakest fot film (d  -n with n ~ 0.8 compared to 
n -- 1.3 for wires). Thus, if one wants to make a 2 
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Fig. 3. Energy gaps (a), absolute EMA errors in the band gap (b) 
and radiative lifetimes (c) for H-covered Si films, wires and 
boxes. The surface orientations are (]10) for films, (]10)×(110) 
for wires, and (110) × (~10) × (001) for boxes. We use Def f = Oil 0 
for films, Def t = D]] 0 = DI] 0 for wires and Def t = (a�-3
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Fig. 5. Comparison of calculated CBM-VBM band gaps vs. size 
as obtained with different direct calculation methods. The curve 
representing the current results is the fitted curve of Eq. (4). The 
other results are NN-TB (nearest neighbor tight-binding) from 
Ref. [10], TNN-TB (third nearest neighbor nonorthogonal basis 
tight-binding) from Ref. [11], s u r f a c e  
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Fig. 8. Density of states of H-saturated films, wires and boxes 
with surface orientations denoted in the caption of Fig. 3. They 
are normalized so that the integral of the valence electrons equals integral 
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Fig. 9. Dielectric constants as a function of spherical quantum dot 
radius R. Here e~ is for total polarization and es is for exciton 
screening. The diamond symbols are the calculated results while 
the solid lines are the curves fitted to Eq. (5). The dashed curve 
corresponds to the generalized Penn model (GPM) given by Ref. 
[17]. 

the other hand, the smaller systems show molecular 
features (more peaks). The calculated surface local 
DOS in Fig. 6 show peaks caused by Si -H bonding. 

An analogous calculation of the density of states 
has been performed for quantum wires and films 
(Fig. 8). The density of states of films (Fig. 8b) is 
rather similar to that of the bulk (Fig. 8a) while wires 
(Fig. 8c) show sharp features which evolve into 
molecular-like states in q quantum dot (Fig. 8d). The 
electron affinity (distance frin vacuum level 0 to the 
CBM) decreases in the series film ~ wire ~ dot. 

2.5• Dielectric constant and exciton screening 

The  integral  e s = fe2(E)/E2dE of  the optical  
absorpt ion spectra e2 (E)  shown in Fig. 7 gives  the 

static dielectr ic  s  s T

I The e~(R) is analogue to ebulk( q = 0) and gs(R) is analogue 
to ebulk( q = p/R)  in the bulk. 
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value much smaller than e~(R) and ~s(R). The result 
of  the GPM can be expressed as 

% -  1 
Es(R) = 1 + (5)  

1 + 

with l = 2 and a = 10.93 ,~, 

2.6. Comparison of calculated exciton energy with 
experiment 

Having calculated the intrinsic one-electron 
CBM-VBM band gap Egap(R) (Fig. 1) and the 
screening dielectric constant ~s(R) for the Coulomb 
energy (Fig. 9), we are now in a posit ion to compare 
our exciton energy to experimental  data. 

In order to compare with the experimental  data, 
the Coulomb interaction energy between the excited 
electron and the hole is added to the calculated 
intrinsic band gap Egap. This gives the exciton en- 
ergy for a sphere within infinite barrier as [19] (in 
atomic unit, Hartree for energy, Bohr radius for R): 

1.786 
Ex(R)=Egap(R)  g~(R) R 0.248 Egy (6)  

The second term in Eq. (6) is the Coulomb energy, 
while the third term is a correlation energy correc- 
tion with Egy = 8.18 meV. 

We first compare our result with the band gaps 
est imated using the optical absorption spectrum 

[20,21]. The comparison is shown in Fig. 10a. Our 
results, and those using the TNN-TB (Ref. [11]) 
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further complications in determining the exact band 
gap from the absorption spectra. Thus we decided as 
a 'sanity test' to compute the excitonic gap vs. size 
[25] for a system for which the experimental data are 
much more accurate CdSe dots. In the case of  CdSe 
[26], the size can be controlled within 5% and the 
exciton energy is measured from an exciton peak in 
the absorption spectrum (due to the direct 

, . . . .  ] / /  
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Fig. 11. Conduction band edge shifts versus valence band edge 
shifts. The experimental data is from Ref. [27]. The experimental 
conduction band shift Aff.c=AEo(d)-3.572/dgs(d), where 
A Eo(d) and the Coulomb energy -3.572/g,(d) are given by Eq. 
(6). 

band are measured from absorption spectra for porous 
silicon of  different quantum dot sizes: 

BEy(d )  = EvBM(bulk ) - Evsra ( d )  

AEo ( d )  = - EcB M (bulk) - EcB M ( d )  (7) 

Instead of  focusing on the highly uncertain size 
dependence, the ratio A E v vs. A E c plots are given, 
thus obviating the need of  measuring the size. 
AEc(R)  and AEv(R)  are plotted in Fig. 11. As 
shown in Fig. 11, if the bulk dielectric constant 
eb = 11.4 is used instead of  gs(R), the result deviates 
considerably from the experimental data. The reason- 
able agreement with experiment suggests that when 
the measured dot size is not used, theory explains 
experiment rather well. 

2.7. Shape dependence at constant size 

Quantum confinement effects can exist in one 
dimension (film), two dimension (wire) and three 
dimension (particle) systems. In Fig. 1, we showed 
that if the effective size is measured as d et N~/3, the 
band gap vs. size (or Nsi) curves are similar for three 
prototype shapes, for which the structures are not too 
prolate. It would be interesting to study the band gap 
change when a quantum dot goes through an extreme 
shape change, e.g, from a film-like object to a 
wire-like object. We examined this by changing the 
aspect ratio d z / d  x = dz /dy  of a rectangular box (see 
inserts to Fig. 12): When the ratio d z / d  x << 1, the 
quantum dot is film-like, when d z / d  ~ = 1, the quan- 
tum dot is cubic, while when d z / d  ~ >> 1, the quan- 
tum dot is wire-like. To eliminate the effects of  
orientation, we studied for 4changing of  
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Fig. 12. Dependence of the band gap and recombination rate 
( l /T )  on the shape (d  z / d  z = d z / d y )  of Si quantum boxes. The 
box has the (100)×(010)×(001) orientation. The ratio d z / d  x 
changes from 0.38 to 13.2 and the box changes from filmlike to 
wirelike. (a) The radiative recombination rate ( l /T )  vs. ratio 
d z / d x. (b) The band gap as the ratio d z / d x. Fitting the d z / d x 
= 1 point to an EMA formula shows that when d z / d  x differs 
from 1, the effective mass formula overestimates the quantum 
confinement effects. This is consistent with the results of Fig. 9 
which indicates that the smaller the length d x or d z, the larger the 
error of the EMA. 

in the empi r ica l  pseudopotent ia l  fitting. As a result, 

our  f i t ted potent ial  V(r)  is very  close to L D A  

screened potential ,  except  that our  potent ial  gives  the 

correct  bulk  band gap and band structure, whi le  the 

L D A  potent ia l  does not. Our  central  approximat ion  

is the use o f  a f ixed,  nonse l f  consis tent  potent ia l  for 

all dots. T w o  newly  deve loped  methods,  the fo lded  

spec t rum me thod  and the genera l ized  momen t s  

method,  are used to calculate  the band edge  states, 

densi ty  o f  states and optical  absorpt ion spectra of  

thousand a tom systems. These  three quantifies are 

suff icient  to de termine  mos t  optical  characterist ics o f  

the system. The current  approach is i l lustrated for Si 

quan tum dots wi th  surface pass ivat ion o f  H atoms. 

Recent ly ,  this approach has also been  used in the 

study of  ca. 300 n m  disorder  superlatt ices [28] and 

C d S e  quan tum dots [25]. 
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