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First-principles quantum-mechanical calculations indicate that the mixing enthalpies for Pd-Pt and 
Rh-Pt solid solutions are negative, in agreement with experiment. Calculations of the diffuse-scatter- 
ing intensity due to short-range order also exhibits ordering tendencies. Further, the directly calcu- 
lated enthalpies of formation of ordered intermetallic compounds are negative. These ordering 
tendencies are in direct conflict with a 1959 prediction of Raub that Pd-Pt and Rh-Pt will phase-sepa- 
rate below ~760 ~ (hence their mixing energy will be positive), a position that has been adopted by 
all binary alloy phase diagram compilations. The present authors predict that Pdl_xPtx will order in 

Llz,Llo, and L12 structures ([001] superstructures)at compositionsx = 4 '  2 '  and 4 '  respectively, the 
I I 

while the ordered structures of Rhx_/Pt x are predicted to be superlattices stacked along the [012] di- 
rections. While the calculated ordering temperatures for these intermetallic compounds are too low 
to enable direct growth into the ordered phase, diffuse-scattering experiments at higher tempera- 
tures should reveal ordering rather than phase-separation characteristics (i.e., off-F peaks). The 
situation is very similar to the case of Ag-Au, where an ordering tendency is manifested both by a dif- 
fuse scattering intensity and by a negative enthalpy of mixing. An experimental reexamination of Pd- 
Pt and Rh-Pt is needed. 

1 .  I n t r o d u c t i o n  

In 1959, Raub 1 suggested the existence of miscibility gaps in 
the Pd-Pt and Rh-Pt systems with fairly high maximum misci- 
bility gap temperatures of 770 and 760 ~ respectively. He in- 
ferred these results from the assumed correlation between the 
maximum miscibility gap temperature and the difference in 
melting points of the constituents and from the experimentally 
observed miscibility gaps in similar alloys, such as Pd-Rh, Ir- 
Pt, and Ir-Pd. 1 Attempts to observe these miscibility gaps have, 
however, consistently failed. 2-5 In agreement with the conjec- 
ture of Raub, tight-binding d-band only alloy theories 6 pre- 
dicted phase-separation for all d-electron-rich alloys, e.g. the 
late transition metal alloys (because the anti-bonding states are 
partially occupied). That this is not a compelling argument is 
clear from the fact that Ni-Pt orders strongly despite its high d- 
electron count. The reason for the failure of such arguments 
was recently clarified. 7 Phenomenological theoriesS, 9 are not 
clear on whether Pd-Pt and Rh-Pt should phase-separate or or- 
der: Miedema's models predicts AH = +(1 to 3) kJ/mol for Pd- 
Pt and AH --- -(2 to 3) kJ/mol for Rh-Pt, both values being close 
to the limit of accuracy of the model. Thus, neither experi- 
ment 2-5 nor simple phenomenological theories s shed light on 
whether these systems order or not. Yet, all phase-diagram 
compilations, 10-15 including the latest assessments by Massal- 
ski et al. 13 and Okamoto, 14A5 have adopted Raub's view, label- 

ing Pd-Pt and Rh-Pt as phase-separating (miscibility gap) sys- 
tems. 

First-principles quantum mechanical stability calculations in 
conjunction with cluster expansions ~6 offer an alternative 
method to the phenomenological approaches.8, 9 Here, note 
that such calculations 7 predict Pd-Pt and Rh-Pt to exhibit or- 
dering rather than phase separating at low temperatures. This 
conclusion comes from the first-principles quantum mechani- 
cal calculations 7 backed up by experimental evidence, 17-19 
which seems to have been largely overlooked by the alloy 
phase diagram community. The situation in Pd-Pt and Rh-Pt 
systems is very similar to that in Ag-Au where an ordering ve24g,3lj38.88 0 TD1 1  1 rg0.56 T200 Tw(in ) Tj16.08 0 TD1 1 1 rg0.30 TwasTw(that ) Tj23.52 0 TD1 1 1 rg0.55 Trecognizoverlooked by ve27t exserlooked very 2u c3182u calculations 22 
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terms). If the series Eq 3 converges after M terms, one can cal- 
culate an equivalent number of  interaction energies { Jr(V) } by 
equating Eq 2 with Eq 3. For example, the simplest, direct in- 
version gives 

M 

Dj/V) = y_., a2d,~,(o.v)[n/o)],  (Eq 4) 
(Y 

which can be obtained once one has performed self-consistent 
quantum-mechanical calculations on M different A,,B,,, or- 
dered structures. These structures do not have to be ground 
state structures. In fact, any collection of  M hypothetical con- 
figurations (that have a nonsingular determinant in Eq 3) will 
do. Using Eq 4, extract a set of  interaction energies { Jj.} from a 
set of total energies {Edlrect(O', V)}. Convergence is examined 
by the ability of  these M interaction energies to reproduce via 
Eq 3 the quantum-mechanically calculated energies of  other 
configurations. This approach recently was reviewed. 16 Since 
the underlying quantum-mechanical calculations of  AEatrect(CL V) 
automatically includes atomic size effects, charge-transfer, 
atomic displacements, exchange-correlation, and covalency, 
all of these factors are also encoded in the ensuing Jj: 

nuity in the internal energy as a function of  temperature and the 
ground state detennined by the state of  the simulation at a tem- 
perature where all configurational changes proved to be ener- 
getically unfavorable.* 

The Warren-Cowley SRO parameter 46 for the Nth atomic shell 
at distance Rt,,,,, from the origin is: 

<H0.A, > _ q2 
O~SR~ - 1 - q2 (Eq 7) 

where q = 2x - 1, and the angular bracket denotes a configura- 
tional average. Note that OtSRO(0)--I by definition. The 
Fourier transform of the real-space SRO is OtSRo(k), which is 
proportional to the diffuse intensity due to SRO. Its value de- 
pends on the number of  N R of  real-space shells used in the 
transform: 

N,r 

O~SRo(k'J'VR) = Z OtsRo(Rtm')e'k RI ..... (Eq 8) 
N 

For a binary alloy with a small lattice mismatch such as the sys- 
tems studied here, the peak positions in reciprocal-space of  
high-temperature ~(k) usually indicate the type of  low-tem- 
perature order structure; i.e., phase-separating systems have 
peak position at the zone center the F = <000> point, while or- 
dering systems have peak positions off the F point. See Ref. 47 
for a more complete discussion of  the SRO versus LRO behav- 
iors. 

2 .2  Calculat ing  the  Clus ter  E x p a n s i o n  Interac-  
t i on  Energies  

The excess energy AEdirect(O', V) vs volume V for 12 ordered 
structures each in Pd-Pt, Pd-Rh, Rh-Pt, and Ag-Au were calcu- 
lated. The structures are defined in Ref. 48. The total energies 
were calculated by self-consistently solving the effective 

1 e2 2,-/'/= 1) Schr0dinger equation (in atomic units: m e = v--f" = 

2Zo [ 2p(r') OE, c[P] 
i-V2 + Z [Rla_ ~ + a i~_ ffl dff + T i  (Eq 9) 

I J 

~,(r) = ~,%(r) 

where p(r) = Z,gff(r)~,(r) is the charge density, Exc[p ] is the to- 
tal exchange and correlation energy, and R~ are position coor- 
dinates of  atom lU with atomic numberZ w The present authors 
use the local density description37. 38 for E,~c[ 9], for which they 
use the functional of  Wigner 49 for Pd-Rh, Pd-Pt, and Pt-Rh and 
of  Ceperley and AlderSO as parameterized by Perdew and 

*A Monte Carlo cell size of 163 = 4096 atoms (with periodic bound- 
ary conditions) was used In the calculation of O~SRo(RImn) and 
cXSRo(k, NR), 500 Monte Carlo steps per site are used to equilibrate the 
system (which is initialized in a completely random state), and sub- 
sequently, averages are taken over 100 Monte Carlo steps per site The 
ground state structures are searched among a set of-65 000 structures 
that have less than 16 atoms per unit cell for Pd-Pt and Rh-Pt, while 
the ground state structures are found using Monte-Carlo simulated an- 
nealing approach for Ag-Au system. 
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Fig. 5 Calculated and measured (where available) mixing en- 
ergy for (a) Pd I rRh~ at T= 1575 K, (b) Pdl_rPt~ at T = 300 K, (c) 
Rh I ~Pt x at T = 300 K, and (d) Agl=rAu a at T = 800 K. The meas- 
ured data are cited from Ref. 56 for Pd-Rh, Ref. 19 for Pd-Pt, and 
Ref. 22 for Ag-Au, while the statistical part of calculations was 
performed using CVM for Pd-Rh, Pd-Pt, and Rh-Pt and Monte- 
Carlo simulation for Ag-Au. One meV/atom equals 9.649 x 10 -2 
kJ/mol. 

Rh-Pt, and Ag-Au indicate ordering tendencies of  these alloys 
rather than phase separation. 

Pd -Rh .  Figure 5(a) compares the present calculated enthalpy 
of  mixingS7 for Pd-Rh with experiment  56 at T = 1575 K.* The 
experimental  values are consistently higher than the calculated 
values by nearly a constant factor of  1.7 (except for three 
points at the two ends, x = 0.1, 0.2, and 0.9). This is surprising 
because the present calculated phase diagram can be brought 
into nearly perfect agreement  with experiment  if one reduces 
(rather than increases) the calculated enthalpies of  formation 
of  the ordered structures AfH by - 1 2 %  as shown in Fig. 3. It 
hence appears that the measured AnuxH of  Ref. 56 is somewhat 
inconsistent with the measured phase diagram of  Ref. 31 and 
32 at least if the latter is interpreted via tetrahedron CVM. A 
careful reevaluation of  the experimental  data is therefore 
needed. A previous calculation by Wolverton et al.34 (at T = oo) 
gave a value o f - 8 0  meV/atom (7.72 kJ/mol),  which is between 
the present calculated value of  60.7 meV/atom (5.86 kJ/mot) 
and the experimental value of  104.5 meV/atom (10.08 
k J/tool). 

P d - P t  a n d  Ag-Au.  The calculated Am~xH(x) for Pd-Pt agrees 
reasonably well with experiment,  19 while for Ag-Au the agree- 
ment is excellent. Note that the calculated Am~xH(x) are consis- 
tently above experiment 22 by less than 2.7 meV/atom (0.26 
kJ/mol) for Ag-Au. There were a few previous calculations 26 
of  AmixH(x) of  Ag-Au using the simple Connolly and Wil- 
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