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We discuss the infiuence of point-ion electrostatics on the long- (LRO) and short-range order
(SRO) in binary fcc-, bcc-, and simple-cubic- (sc) based alloys. The electrostatic problem is studied
by a combination of (a) a model for the distribution of point charges on lattice sites, motivated by
recent first-principles calculations, (b) a mapping of the infinite-ranged Coulomb interaction onto a
rapidly convergent series of effective interactions, and (c) Monte Carlo simulated annealing of the
ensuing Ising-like expansion. This provides a means to identify the lowest energy structures ("ground
states") at zero temperature and the dominant wave vectors of the SRO at high temperatures, which
are stabilized by ionic interactions. (i) We confirm previous results that the three ground states of
the fcc Madelung lattice are the D022 (AsB and ABs) and "40" (AB) structures, which can all be
described as (210) superlattices. We further find that the ground states of the bcc and sc Madelung
lattices are CsCl and NaCl, respectively. (ii) Despite the fact that the structure "40" has the lowest
electrostatic energy of any fcc-type compound, this structure is very rare in nature. We find that
this rarity could imply that a highly ionic fcc AB compound will transform to the bcc structure
CsCl that is electrostatically more stable for the same charge distribution. The exception is when
the energy required to promote the e)cmental solids A+ B from fcc to bcc is larger than the gain
in electrostatic energy. (iii) Monte Carlo and mean-field calculations both demonstrate that the
dominant wave vectors of LRO and SRO coincide for the bcc and sc Madelung lattices. However,
for compositions x & 0.33 and x & 0.67 on the fcc lattice, mean-field calculations incorrectly predict
SRO peaks at the (1—0) points, whereas Monte Carlo calculations show SRO peaks at the (100)
points. Thus, in describing fcc electrostatics, the mean-field theory of SRO is seen to qualitatively
fail. (iv) Electrostatic point-ion interactions lead to significant SRO correlations. Near the transition
temperature, these correlations account for a & 60% change in the energy of the random alloy.

I. INTRODUCTION:
THE MADELUNG LATTICE PROBLEM

When different atoms are brought together to form an
alloy or compound, the redistribution of charge densities
as compared to their atomic densities may lead to what is
commonly referred to as "charge transfer. " The electro-
static contributions to the total energy of an alloy or com-
pound due to charge transfer have been widely used to
discuss the structural stability of not only alkali halides,
but also coordination compounds ' and semiconductor
and intermetallic alloys. Whereas in Ob initio total
energy calculations ' the electrostatic contribution is
calculated from the continuous electronic charge density
p(r), in simpler approaches one discretizes the (electronic
plus nuclear) charge density into a set of point charges.
The ensuing electrostatic Madelung (M) energy EM has
been widely used as one of the energy terms deciding
structural stability of compounds and alloys. ' We
discuss in this paper the manner in which the point-ion
electrostatics decides the long- and short-range order in
binary fcc-, bcc-, and simple-cubic- (sc) based alloys.
While the electrostatic contribution is clearly not the
only term entering the total energy, it is interesting to
see that it leads to clear structural preferences for both
short- and long-range order.

In the point-ion Madelung model of a given lat-
tice (e.g. , fcc, bcc, and sc), each of the N —+ oo sites
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First, evaluating EM(cr) from Ewald's method for all
possible 2 configurations of N lattice sites occupied
by A and B atoms can be laborious. This problem
can be addressed by using lattice-gas techniques which
efIiciently search the 2 space for the lowest energy
configurations. ' However, in the formulation of Eqs.
(1) and (2), the bare interactions J,i are infinite in range
and are dependent upon the configuration through the
configuration dependence of the charges Q;. Both these
facts make the Ising series written in terms of the bare in-
teractions cumbersome, as much of the literature to date
on Ising models concerns interactions which are rela-
tively short ranged and configuration independent. How-
ever, as shown recently, it is possible to exactly renor-
malize the infinite ranged series of Eq. (1) expressed in
terms of bare Coulomb interactions into a short-ranged,
highly convergent series expressed in terms of effective in-
teractions which are configuration independent. This will
be illustrated in Sec. II. Hence the standard techniques
used to deal with Ising models may be applied to
this series of efI'ective interactions.

The second difficulty with a direct search of E~(0) is
that this requires a model associating sites i with charges
Q;. The association of sites and charges is not trivial ex-
cept for the cases of ordered arrangements of atoms for
which all chemically identical atoms are also symmetry
equivalent and hence have identical local environments.
For instance, in the perfectly ordered NaCl structure, all
Na sites i have only Cl atoms as nearest neighbors and
thus can be assigned the charges Q, = +1 for all i. Simi-
larly, all Cl sites j are surrounded exclusively by Na and
have Q~ = —1 for all j. However, in a random Nao sClo 5

alloy, some Na atoms are coordinated locally only by Na
atoms and hence have Q; 0, like in metallic Na, while
other Na atoms could be surrounded locally by all Cl
atoms and consequently could have Q, +1, like in the
ionic Na~l crystal. Thus, in order to use Eq. (1) to re-
alistically model the electrostatics in alloys, one must
first determine a physically reasonable description for
the distribution of charges on lattice sites. Recent first-
principles charge density calculations for both ordered
and disordered transition metal ' and semiconductor
alloys have shown that the efI'ective charge on each site
primarily depends on the identity of atoms in the nearest-
neighbor coordination shell around it, e.g. , the number of
unlike nearest neighbors. This suggests that a realistic
model in screened solids is one with a linear dependence
of the charge on the number of unlike nearest neighbors:

where S; is —1 (+1) if an A (B) atom is located at site i.
S;+I, indicates the occupation of the Z lattice sites which
are nearest neighbors to i and hence the summation in
Eq. (3) indicates the number of unlike nearest neighbors
surrounding the site i. A is a constant that indicates
the magnitude of the charge transfer. The maximum
possible amount of charge transfer Q „=2ZA is then
given by Eq. (3) for an atom coordinated completely by

unlike nearest neighbors. For example, in the fcc lattice
the coordination number is Z=12, so the charge on an
A atom surrounded by n B atoms and 12 —n A atoms
isQ; =2An. AsO) n&12, wehaveO&Q, ) 24A
depending on the value of n. Using the charge model
of Eq. (3), deduced from first-principles calculations2e
and more recently derived from the coherent-potential
approximation, the lattice Madelung energy may be
written as

where nM(0) is the Madelung constant for the config-
uration o, d is the nearest-neighbor distance, and Q ~
is the optimum amount of charge transfer possible for
simple, ordered arrangements of atoms with only two
symmetry-distinct types of atoms. The Madelung en-
ergy [Eq. (4)] is purely attractive and thus EM ~ —oo
as d ~ 0. Therefore, we optimize the Madelung constant
n~ rather than the Madelung energy of Eq. (4). This
is equivalent to finding the states of minimum Madelung
energy for a fixed value of d and Q ~. Considering the
CuAu, CsC1, and NaC1 structures (based on the fcc, bcc,
and sc lattices, respectively), we have Q &

——16A, 16A,
and 12A. For the bcc and sc lattices, Q ~ = Q „=16A
and 12A, respectively, since for these lattice types it is
possible to completely satisfy the ordering tendencies

of

alloys

with

structures

in

whicheachatomcoordinatedcompletely

by

atoms

of
thus

bcc
andsc

are

applied
to

be

config-illustratedi.theillustratedbcclattice

of

nearest-neighbor

dependsand

henceit

is

not

to

atom

with

nearest

neighborsofunlikethusforfcc

is~

„=

Q„=notis
use

the
of(B)and

for

theandbccand

for

the

fcc

latticewe

the

en-

fccinotn.

and

andnot

n.

which

se33 Td
(use)Tj
ET
BT
/Xi1f
390.2f9255.11 104.33 Td
(the)Tj
ET
BT3/Xi1 f
54.7f9255.11 10review2 Td
(II.)Tj
ET
BT
/Xi1 9.26 Tf9255.11 109.67 Td
(in)Tj
ET
B
/Xi1 2.08.2f9443.56 286.f22 Td
(Eq.)Tj
ET
B/Xi1 4.94 T2
438.33 4318Td
(nM(0))Tj
ET
BT4/Xi1 9.12 T 8.9
346 474.44 Td
(have)Tj
ET
B1T
/Xi1 .19 Tf8515.78 455.89 Td
(recently)Tj
ET
BT
/Xi1 8.39 T 8.9
346 478.56 Td
(used)Tj
ET
BT
/Xi1 99.11 T8515.78 457.22 Td
(the)Tj
ET
BTT
/Xi 9 9.5 Tf515.78 457.67 Td
(model)Tj
ET
BT
/Xi148.23 T28198.22 243.78 Td
(of)Tj
ET
BT
T
/Xi1 6T28196.22 646. Td
(atoms.)Tj
ET
BT
/Xi1  f
54.7f82f
117 12#Td
(nM(0))Tj
ET
BT
/Xi1 99.11 T8515.56 688.44 Td
(and)Tj
ET
BT
/Xi1 
384.7f82f
117 12� Td
((3))Tj
ET9.76
/Xi1 9 Tf8515.78 45("8.89 Td
(the)Tj
ET
BT
/Xi1 9.12 T f
276.89 7binad
(symmetry)Tj
ET
B9
/Xi1 99.06 Tf
276.89 76.78 Td
(Madelung)Tj
ET
BT
/Xi13
0.06 Tf
21.78 476.22 
(config-)Tj
ET
BT
/Xi1 9.34 T27
54.67 243.oTd
m"lustrated

(3)
in

occupationoccupation8.56 Td
(to)Tj
ET
BT
/Xi14 9.26 f
443.67 425.22 Td
(be)Tj
ET
BT
/Xi1 
462.7f
443.67 426.78 Tbcoordinatedfor

the

fccusestructuresFi2.22 Td
(g.)Tj
ET
BT
/Xi 9.24 Tf0811.56 3356 Td
((1))Tj
ET
BT
/Xi1 9.72 Tf
496.67 699.11 Td
(that)Tj
ET
BT
/Xi14
9.9.720989.56 4577822 Td
(be)Tj
ET
BT
/Xi1f
390.2f0.74.33 43g.22 Td
(around)Tj
ET
BT
/Xi1500720989.56 456.33 Td
(states)Tj
ET
B7T
/Xi 2990.2f0.74.67 201.44 Td
(of)Tj
ET
BT
/Xi154175 Tf0.74.44 486.33 Td
(the)Tj
ET
B45/Xi111.91 Tf
443.56 696.56 Td
(fcc)Tj
ET
BT
/Xi1 9.06 Tf9815.78 457.22 Td
(Madelung)Tj
ET
BT
/Xi1 8.89 Tf
443.56 693.11 Tdneighbors:12As8.33 Td
(B)Tj
ET
BT
/Xi1 9.61 Tf9 Tf
84 328.78 Td
(and)Tj
ET9.76T
/Xi1 9.6 Tf9216.33 49ABsTd
(nM(0))Tj
ET
BT
/Xi1 9.41 Tf9 T5.56 688.44 Td
(and)Tj
ET
BTT4/Xi159.96 T20519.56 56"40"lustrated(4).thesemaytobestatest-wavTd
(charges)Tj
ET
BT
/Xi1 
521.317
54.78 307.o8 Td
(Using)Tj
ET
BT
/Xi1 9.26 T17131.33 307.67 Td
(the)Tj
ET10BT
/Xi1 8196 T1
361.78 47�. Td
(nM(0))Tj
ET
B3
/Xi1 88.9 T17131.33 30direcd
(occupation)Tj
ET
B

/Xi1 
951.317
54.78 303.67 Td
(in)Tj
ET
BT
/Xi1 9.13 T1
402.22 67recip89 Td
(re-)Tj
ET
B57/Xi1 9. 16521.33 50r.11 22 Td
(be)Tj
ET
BT
/Xi139.61 T16313.78 64spaTd78 Td
(to)Tj
ET
BT
/Xi11 9.8 T1
313.56 66.11 Td
(for)Tj
ET
B

/Xi1 8271.316223.89 307.67 Td
(is)Tj
ET
BT
/Xi1 9.41 T16.11 360uper4.67 Td

(finding)Tj
ET
B
/Xi1 1
333.516.11 369.22 Td
(with)Tj
ET
BT
/Xi148.62 T16537.11 49laye
(neighbors)Tj
ET
BT/Xi1 9.08 T16313.78 64ori56 Td
(derived)Tj
ET
BT
/Xi1 8261 T16319.56 457.o8 Td
(Using)Tj
ET
BT
7Xi1  9.15 T 8.44 49(2106 Td
((4).)Tj
ET
B5/Xi1 16811.515981.56 568structuressoaround

that

energythe

in

asinre-completelyderivedinthustendencies''thefcchaveen-the

states

order

notscreenednotaround

possible

states

re-

andusewhichto

be

wherefor

the
and

fcc

re-



6878 C. WOLVERTON AND ALEX ZUNGER
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FIG. 1. Conventional unit cells for the ground state struc-
tures of the fcc, bcc, and sc Madelung lattice. In addition
to the lowest energy states of each lattice, the energetically
competitive Llo and L12 fcc-based structures are shown.

In this paper, we focus on several problems regarding
the Madelung lattice.

(i) Although the equimolar (120) structure ("40") is a
ground state of the fcc Madelung lattice, surprisingly
it is rarely if ever observed experimentally in fcc-based
alloys. Given that Eq. (3) was demonstrated2 ' to
be an excellent approximation to direct local-density ap-
proximation (LDA) calculations, one must conclude that
either charge transfer is never the dominant effect at
equiatomic composition or when it is dominant, geomet-
rical factors such as lattice topology serve to make other
non-fcc structures more stable. We find that the CsC1
structure has the highest Madelung constant (and conse-
quently, the lowest energy) of any fcc-, bcc-, or sc-based
structure. Hence, even in alloy systems where charge
transfer is a dominant- effect, an fcc alloy would prefer to
transform to the bcc CsCl structure, which, for the same
ionic charges, produces the maximal electrostatic stabi-
lization. An exception would occur for an ionic alloy sys-
tem5 Tf
110 349e
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tion in Eq. (9) contains only a small number of nonzero
terms. Also, a nonzero value of Kq implies that there
are triangles of nearest-neighbor bonds in the lattice or
that the lattice is frustrated. It is then readily apparent
from Table I that the fcc lattice is frustrated (Ki g 0),
but bcc and sc are not (Ki ——0). Other values of K
simply indicate the extent to which more distant pairs
in the lattice are linked by common nearest neighbors.
Thus K gives some qualitative indication of the extent
to which the lattice is "open" or "close packed. " It is
apparent that the fcc lattice has many more nonzero val-
ues for K than do bcc and sc and hence is more close
packed. Similarly, the sc lattice has very few pairs of
atoms which share common nearest neighbors and thus
may be described as an open lattice structure. By using
Eq. (9)
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IV. RESULTS

A. T = 0 K long-range order ("ground states")

00'
-0.2

D
-0.4

-0.6—
O

-0.8

-1.0
-1.2

CD

Q) -1.6
c5

-1.8

Ground-state Energies of the Madelung Lattice

CsCI
0 I 10 ~ 1 .5944

"40" ~ 1.6366
NaCI + 1.7476
CsCI o 1.7627

0.0 0.2 0.4 0.6
Concentration x

0.8 1.0

FIG. 3. Ground state structures and random energies of
the fcc, bcc, and sc Madelung lattices. The fcc-, bcc-, and
sc-based structures are shown as 611ed circles, empty circles,
and crosses. In addition to the lowest energy structures on
each lattice, several structures are also shown which have en-
ergies close to the ground state line. The inset shows the
equiatomic structures and also gives the numerical values of
the Madelung constants, as calculated from a cluster expan-
sion with the first 20 pair interactions Jo qo (see Table II).
The cluster expansion values for the Madelung constants all
agree with the exact (as per the Ewaid method) values to five
significant digits.

The LRO ground states and random energies for the
fcc, bcc, and sc Madelung lattices are shown in Fig. 3.
From the ground state searches, we find the following
features.

(i) As in the work of Magri et at. , we find (in addition
to the pure constituents A and B) the three lowest en-
ergy fcc-based configurations to be the D022 (AsB and
ABs) and "40" (AB) structures, all of which are com-
posed out of composition waves along the (120) direction
in reciprocal space. (The D022 structure is composed out
of a combination of (120), (100), and (000) composition
waves; however, the (120) wave has the largest ampli-
tude. ) The (100)-based structures Llo (AB) and L12
(AsB and ABs) are, however, energetically in close com-
petition. Conventional unit cells for all of these struc-
tures are shown in Fig. 1.

(ii) For each of the bcc and sc lattices, only one inter-
mediate compound appears in the ground state analysis
at equiatomic composition. These are the CsCl bcc-based
and NaCl sc-based structures, which may be described
by (100) and 2 (111) composition waves, respectively.
Thus, at equiatomic composition, there is an interesting
competition between the (1 2 0)-, (100)-, and 2 (111)-type
waves for the fcc, bcc, and sc lattices. This competi-

tion is illustrated in greater detail in the inset of Fig.
3. Of the ordered equiatomic compounds, both the bcc-
based CsCl and sc-based NaCl have a higher Madelung
constant (lower electrostatic energy) than the fcc-based
structures. The CsCl has the lowest Madelung energy
(highest Madelung constant). The relative orders of
electrostatic stability of the four equiatomic compounds
(CsC1, NaC1, Llo, and "40") are not directly amenable
to a simple nearest-neighbor-only description: If the clus-
ter expansion of Eq. (5) is prematurely truncated at the
first-, second-, third-, or fourth-neighbor effective inter-
actions (Table II), the lowest energy structure at x =
1/2 is incorrectly predicted to be Llo (degenerate with
"40"), Llo, "40", or NaCl, respectively. Only when the
first five shells of effective interactions are retained (Ta-
ble II) does the cluster expansion give the correct order
of stability (as confirmed by Ewald-method calculations)
as shown in Fig. 3. Subsequently adding more shells of
effective interactions (f'rom the 6th to the 20th neighbor
shell) does not change the qualitative order of stability
between the x = 1/2 structures and also makes a negli-
gible quantitative change to the Madelung constants of
these structures. These facts again imply the conver-
gence of the cluster expansion of the Madelung lattice
with only the first five shells of efrective interactions.

(iii) Although the ordered bcc (CsCl) and sc (NaCl)
structures are electrostatically more stable than those
of fcc, the random fcc solid solutions are much lower in
energy than the bcc or sc solid solutions (Fig. 3). In-
deed, it is observed in the ionic Cu-Pd system that,
although the LRO at equiatomic composition is the bcc-
based CsC1 structure, the alloy disorders into an fcc solid
solution. The relative energies of random alloys on dif-
ferent lattices are described in fTf
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E&+& —E&+& ( 0 and the orders of stability could be
reversed, provided that E&+& —E&+& is sufficiently neg-
ative so as to overcome the difI'erence between the CsCl
and "40" electrostatic
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&om the high-temperature disordered phase to the low-
temperature CsCl or NaC1 structure are both second or-
der (or weakly first order) and therefore without further
refinements to the Monte Carlo (such as finite size scal-
ing), we cannot give accurate values of the transition tem-
peratures. The Monte Carlo calculations show that the
SRO peaks at the (1QQ) points for bcc and the —(ill)
points for sc lattices for all compositions. These k vec-
tors are identical to those for the long-range ordered CsCl
and NaCl states, the T=O K ground states for bcc and sc.
Consequently, the mean-field calculations show remark-
ably good agreement with Monte Carlo.

D. T g 0 K SRO in the fcc Madelung lattice:
A failure of mean-field theory

The SRO(k) for the fcc Madelung lattice from Monte
Carlo and mean-field (with and without Onsager correc-

tions) calculations are contrasted in Fig. 6 as contour
plots in the (hkQ) plane. Black shading inside the high-
est contour locates the peaks in the SRO patterns.
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CC-CPA. Many current SRO calculations based on the S-
CPA (Refs. 26 and 32—35) employ the mean-field approx-

32
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0.0

-0.2

TABLE IV. Dominant wave vectors of the long- and
short-range order for the fcc, bcc, and sc Madelung lattices.
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