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occupied by atom A(B. ) .The excess energy b,E(e, V) of
any of the 2~ configurations 0. is

AE(o, V) = E(a, V) —[(1—x)E~(V~) + xEII(VII)] .

Equation (1) depends on volume V and is defined with
respect to the energies of equivalent amounts of pure
solid A and B at their respective equilibrium volume
V~ and V~. Low-temperature LRO of a given lattice
type is then interpreted as the configuration cr which
gives the lowest AE(a, V ) at the equilibrium volume V .
Since quantum-mechanical calculations of an astronomic
(2+) number of such configurational formation energies
b.H~(o) = b,E{cr,V ) is prohibitive, one performs such
a "ground state search" by expanding Eq. (1) in a finite
Ising-like "cluster expansion" (CE)

&E«( V) = ):DfJf(V)llf{~)
f

where Jf(V) are volume-dependent interaction energies
of basic lattice "figures" f (e.g.
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an ordered configuration a and the energy AH;„(x)of
a random alloy at the same x, does not depend on G(x).
Denoting a configurational average for the random (R)
state by angular brackets ( )R this results follows from

b,H;„=G(x) + ) Df Vf(IIf)~
f

= G(z) + ) DgVf(2x —I)"~
f

(7)

where (II)~ = (2x —1)"~ and kf is the number of vertices
in figure f H.ence,

bEo,s(o)= ) 'Df Vf [IIf(o) —(2'z —I)"~]

f
= s(o) —s(random)

is not affected by volume deformation.
The separation of variables in the two terms of Eq. (4)

has a physical implication in cases where ground state
LRO is determined incoherently (i.e. , each phase adopt-
ing its own equilibrium V ), while SRO is determined
coherently (all competing structures being constrained
to a fixed composition). Table I shows the three ba-
sic situations that can be encountered: Type-I systems
have a negative formation energy AHJ; ( 0 (thus, an
ordering-type LRO at low temperatures), and the dom-
inant spin-flip energy is antiferromagnetic Vf ) 0 (thus,
an ordering-type SRO at higher temperatures). This
leads to s ( 0 and bE,s & 0. Type-I systems thus corre-
spond to the usual "compound-forming" systems where
the elastic energy is overwhelmed by attractive chemical
interactions and LRO and SRO both have their compo-
sition modulation wave vector k og (000) [note, how-

ever, that ks~Q and kLRQ may differ, as in the case of
PdsV (Ref. 11)]. Type-III systems are just the oppo-
site, having AHg & 0 and ferromagnetic spin-Hip ener-
gies, and so LRO and SRO both have the same phase-
separating/clustering wave vector k = (000). This dis-
cussion shows that one could have an intermediate case
(type-II systems) where AH~ ) 0 because the elastic
energy is large [G(x) )) 0], yet the dominant spin-flip
energies are antiferromagnetic (Vf ) 0; bE,s ( 0).

Note that if we do not separate G(z) from s(o) but
extract instead the effective cluster interactions from the
sum AH~ ——G+c, then for type-II systems we are bound
to get ferromagnetic Jf ( 0 leading to a pure k = 0
type SRO. This is true whether we relax AH~ or not

(since AH~ ) 0 for type-II systems). Thus, for type-II
systems the interaction energies (Jf) that describe the
total entha/pies are not appropriate to describe coherent
SRO. The only consistent method to describe SRO for
type-II systems is to extract the effective cluster interac-
tions from AE(o, V) ofter the elastic energies have been
subtracted. This corresponds to retaining only the sec-
ond term of Eq. (3), i.e. , considering o, A, and B all at
the same volume. For type-II systems this term is neg-
ative (Table IV), and so the interaction energies (Vf)
extracted from it will be antiferromagnetic leading to an
off-I' peak
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4(Pm'+ m'n'+ n'I')
p(G

(I + m' + n2)' (10)

rectly, we must consider disordered alloys for which mea-
surements of relaxed interatomic distances exist. If one
ignores relaxation altogether (e.g. , as in the general-
ized perturbation method, concentration wave, tight-
binding direct con6gurational averaging, and the em-
bedded cluster method ), or includes only hydrostatic-
like volume deformations, 8 then the A—A., B—B,
and A B—bond lengths in an Ai B alloy end up being
equal. This could be a severe approximation: Both cell-
external and cell-internal relaxations change the spin-Hip
energies (Vf) and the atomic positions. For example,
measurementsm on disordered ¹Au show that these re-
laxations create three distinct bond lengths Ni—Ni, Ni-
Au, and Au—Au and a distribution around each of them.
We have calculated the alloy bond lengths by minimizing
the elastic energy of a supercell whose sites are occupied
by Ni and Au so as to mimic a larger supercell [i.e., us-

ing the concept of special quasirandom structures
(SQS's)]. This minimization can be done either by using
an atomistic total energy expression (e.g. , LDA) or by us-

ing continuum elasticity. We have previously shown
that the two approaches yield very similar results for
lattice distortions even at the limit of short period su-
perlattices. Since the SQS happens to be a superlattice
along some orientation G, we will calculate its equilib-
rium interlayer spacing c,q along G as a function of the
perpendicular lattice constant a~ using continuum elas-
ticity, i.e.,

c,q (a&) = a(') —[2 —Sq&' (G))[a~ —a&'&] . (9)

Here a,q is the cubic lattice constant of material i,
q('&(G) is the "strain reduction factor" along G given
by4'44 q(G) = 1 —B/[Cii + p(G)b, ], where b,
C44 —(Cii —Ci2)/2 is the elastic anisotropy, B is the
bulk modulus, C;~ are the elastic constants, and the ori-
entation dependence is given by the geometric constant

Here, l, m, and n are the Miller indices for the direction

G. Equations (9) and (10) predict very well c,~ (a&)
as computed by LDA for short period superlattices.
While the elemental solids Ni and Au have the equilib-

rium lattice constants a~q, in the alloy environment these
will expand and contract, respectively, to the alloy value

a~ ——a(z). We then imagine a coherent layer of pure
Ni (or Au) whose perpendicular lattice constant is con-
strained to equal a(x), finding from Eqs. (9) and (10)
the
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W = (120) points. Figures 2(b) and 4 compare the cal-
culated and experimental a(N) and a(k, NR) (NR = 10),
where the experimental data were measured at T = 1228
K and the experimental results are scaled with respect to
a,„i,q(0) = 0.825. The calculated o.(k, NR) agrees the ex-
periment reasonably well. Quantitatively, the calculated
and experimental peak intensities at W = (120) are 3.4
and 3.3, respectively.

Pdi Rh is a prototypical phase-separating system
(type-III). While Pd and Rh have a fairly small lat-
tice mismatch of 2.3%, the repulsive chemical interac-
tion between Pd and Rh drives them apart. Indeed, the
a(k, NR) peaks at the I' point as shown in Fig. 1(c).
This behavior fTd
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