
PHYSICAL REVIEW B VOLUME 15, NUMBER 10 15 MA Y 1977

Self-consistent numerical-basis-set linear-colnbination-of-atomic-orbitals model

for the study of solids in
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through the usual eth-site Poisson equation and
the local density exchange and correlation func-
tionals
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FIG. 2. Three-dimensional plots of the numerical
Bloch functions at the I' point in the BZ (110).

butions from various unit cells to yield 4 (%, r)
as indicated in Eq. (16).

h

Q Q [H„~„~(k)—S„~„q(k)e;(k)]C„~~(k)= 0
a=1

(21)

is solved, where the Hamiltonian matrix elements
are

H „q(k)=(4 (karl —&+'+V(r) I@ s(" r))

(22)

and the overlap matrix elements

S„„~(k)= (4„(k,r) l 4„~(kr)).

The eigenvalue spectrum e&(k) yields the band
structure defined throughout the BZ; however,
since they are found strictly from ground-state
local-density operators defining V(r), they bear
no rigorous relation to elementary excitations in
the system.

In order to achieve maximum flexibility in the
construction of V(r) [e.g. , by including a.rbitrary

(23)

C. Matrix elements

Once the model initial potential V'"'(r) and the
expansion basis set are defined, the usual linear-
variation secular matrix

forms for the correlation part and avoiding linear-
ization of F„(p'"'(r))and F„„(p'"'(r)),etc. ] and

the 4 (k, r) (e.g. , by allowing for nonanalytic and

possible off-center basis functions) one has to
have a general form-independent algorithm for
calculating the three- dimensional multicenter in-

tegra. ls appearing in Eqs. (22) and (23).
Figures (1) and (2), showing the shapes of V(r)

and 4, (k, r), reveal the fact that any integration
scheme with this type of integrands must be able
to cope with the Coulomb singularities in V(j) the

nodal character of 4„(k,r) near the nuclei and

their diffuse shape in the interstitial region. Con-

trary to the situation met in problems of inte-
grating the three-dimensional corrections to the
muffin-tin charge density, ' the
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of the buildup of charge in the bond region. The
method is very simple and straightforward
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gence to an arbitrary limit, depending on the
approximations inherent in Eq. (29).

Since a direct real- space point-by-point numer-
ical integration of the multicenter three-dimension-
al Poisson equation related to p,~(~) is too labor-
ious to be of practical use, various methods have
been devised to circumvent this problem. These
are broadly divided into
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along with a structure near the nuclei due to in-
terpenetration of charges from
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Property
Mulliken

SC
Lowdin

SC
Free

minimization

Final deviation cr

Eigenvalue s
r25, vr„„
r~, c
1-2,v

L3, v

L3,c
X), „

X4
„

X) c
X4, c

Hybridization
Ratio (2p/2s)

Total energy
per atom (eV)

Form factors
f i'll.

f»2
fr2o

0.1595 0.1714 0.098

20.419
26.819
34.547
5.268

17.635
30.800
8.276

14.350
29.127
37.222

20.426
26.838
34.562
5.282

17.648
30.819
8.276

14.362
29.138
37.184

20.403
26.776
34.530
5.264

17.624
30.767
8.269

14.329
29.086
37.179

2.773 3.265 1.701

-1013.113 -1011.235 -1013.3990

3.206
0.1140
1.986

3.201
0.1110
1.975

3.210
O. 1170
1.990

as computed at 24 points in the ~ irreducible BZ
section. It is seen that the charge dispersion is
quite low (typically of the order of 0.15e for both
2s and 2P states), and that the Lowdin 2s(2P)
charge is systematically lower (higher) than the
corresponding Mulliken charges. The disper-
sion of the 1s charges in both schemes is smaller
than 1 part in 10' and is not shown in Fig. 5. Table
I shows the BZ averaged cha.rges, using 4, 6, 10,
and 19 nearest-volume points in the irreducible
BZ section. It is seen that the 6-tt sampling pro-
duces charges that are accurate to within 0.005e.
At the end of each iteration, p, ('Fl is used to con-
struct a new potential, and the iteration cycle is
repeated until SC in populations is better than
0.005e. A nonlinear va, riation of the basis set is
performed at each iteration. A simple damping
technique of the iteration cycle'~ (with a damp-
ing coefficient of 0.3) combined with the use of
the "Pratt improvement scheme"" near conver-
gence enables self-consistency to be obtained
typically in three to six iterations. The final wave
functions are used to compute the total energy per
atom and the x ray form factors (Appendix A).

Table II summarizes the results obtained at a

TABLE II. Comparison between some calculated prop-
erties obtained in three different CCSC models. Mulliken

SC and Lowdin SC refer to iterative calculations based on

the Mulliken and Lowdin charges, respectively; "free
minimization" refers to an iterative least-squares mini-
mization of the charge
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previously published calculations have attempted
such a task. Thus, we are forced to refer mainly
to the resulting eigenvalues and use the total en-
ergy only as an internal criterion for examining
the quality of our various basis functions. Since
previously published LCAO studies on diamond
were not carried out to SC nor calculated with the
correlation functional
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cedure and no general statement can be made
about the "optimum" truncation
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it is possible to reduce the long-range character
of these orbitals without any significant loss in
the accuracy of the resulting eigenvalues and total
energy. The distance from the atomic origin at
which this well was constructed was fixed by the
requirement that this external potential will not
change the spatial behavior of the low-lying core
plus valence atomic orbitals.
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~4ln the LCAO calculations of Chancy, Lin, and Lafon
(Ref. 11) as well as in the LCBO study of Kelvin and
Lafon (Ref. 12a), and the OPW study of Bassani and
Yoshimine (Ref. 3), the potential is generated from an

overlapping atomic model using the Hartree- Fock
charge density calculated by A. Jucy [Proc. R. Soc.
Lond. A 173, 59 (1939)] for the 1g 28 2p ground-state
configuration of the carbon atom, and the crystal ex-
change potential is linearized to a lattice sum of atomic
charge potentials. The lattice constant is taken as
6.728 a.u. In the discrete variational study of Painter
et al. (Ref. 8), the atomic Hartree-Fock density of
Clementi was used with no linearization of the exchange
potential. In this work a lattice constant of 6.7406 a.u.
was used.
As is well known, the OPW results for








