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Band gaps and spin-orbit splitting of ordered and disordered Al„Gat „As and GaAs„Sb& „alloys
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Spontaneous long-range ordering of the otherwise disordered isovalent semiconductor alloys
A B, C has been recently observed in numerous III-V alloy
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induced effects will be more pronounced.
This study is aimed at (i) developing an understanding

of the basic differences between the electronic structure
of ordered and disordered alloys, and (ii) aiding in the
identification of ordered ternary compounds, through
their electronic fingerprints.

The two systems we have chosen to study are the or-
dered common-anion Al„Ga4 „As system, exhibiting
near lattice match, and the lattice-mismatched common-
cation Ga4As„S14 „system. Both systems have been ob-
served to form spontaneously ordered phases when
grown on lattice-matched substrates.

Using self-consistent first-principles band-structure cal-
culations we find that (i) the fundamental band gaps of
the ordered ternary compounds are usually smaller than
the linear average of the band gaps of the binary constitu-
ents due to symmetry-enforced level repulsion; (ii) the
bowing parameter of the spin-orbit splitting Ao is nega-
tive for common-cation ordered ternary compounds due
to repulsion-induced
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here as "CA"}and at 25%-75% or 75%-25%%uo composi-
tion the luzonite-like structure (denoted here as "L").
(iii) For the (1,0,—,) ordering vector [sometimes denoted
(2,0,1)], we have at 50%-50% composition the chalcopy-
rite structure (denoted here as "CH"), whereas for 25%-
75% or 75%-25% composition we have the famatinite
structure (denoted here as "F"). Finally, (iv) for the
(—,', —,', —,') ordering vector [sometimes denoted (l, l, l)], we

have at the 50%-50% composition the layered trigonal
CuPt-like structure (denoted here as "CP").

Since the information on these structures is scattered
in numerous literature sources, and since different nota-
tions are used in these sources, we give in Fig. 1 a
comprehensive list of notations. For instance, to find the
space group operations, use the International Tables for
Crystallography under the space-group number given in
Fig. 1. To find other compounds belonging to these
structure types and the atomic-position coordinates, use
Pearson's Handbook of Crystallographic Data for Interme
tallic
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TABLE I. Mapping (folding relationships) of the zinc-blende (ZB) I and X states into ABC& CuAu-
I-like states and A, BC4 luzonite-like states at the center of the Brillouin zone. The origin of the coor-
dinate system in ZB is at the anion site.

ZB
ABC„CuAu

Common anion Common cation
A 3BC4, luzonite

Common anion Common cation

r,
I ls

X,
X3
Xs

I I

I s+I 4

I,
r,
r,

I.
,

I,+I.,
II
I4
Is

I I

I is
I ls

I (+I )2
I is+I zs

I )

I is
I I+I 12

I is
I is+I zs

turbed" crystal potential for the ternary structure such
that the states I „(Ii, ) and 1 „(Xi,) would be degen-
erate with the average energies ( I „)and (X„),respec-
tively. Despite the fact that a seemingly new direct state
I, (X„)is generated in the ternary structure, in the ab-
sence of a potentia1 perturbation the no-phonon transi-
tion matrix element from valence-band I states is, of
course, still precisely zero, just as is the case for transi-
tions to the X&, state from folded.

In reality, however, there ordering potential
perturbation b, distinguishing energy levels of the
ternary system average energy levels
binaries. potential not have zinc-blende sym-
metry, but belongs instead to the totally symmetric repre-
sentation of the space group of the ternary structure. In
general, b, has a electronic piece, contribut
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TABLE III. Mapping (folding relationships) of the zinc-
blende (ZB) I and L states into ABC2 CuPt-like states at the
center of the Brillouin zone. Origin at the anion site.

(a)
Linearly Averaged

band gaps
(LDA)

b
Linearly Averaged

band gaps
(Experimental)

ZB

r,
I ls

L,
L3

Common anion Common cation 2.2—

o 1.8

CA

1.4
LLJ

1.0

0.6

1.



3284 SU-HUAI WEI AND ALEX ZUNGER 39

the wave function on difFerent sublattices in A„B4 „C4.
The degree of this localization is strongly correlated with
the energy shift 5E of Eq. (l). This repulsion-induced
level localization is analogous to that described in tight-
binding models for zinc-blende compounds, where level
repulsion causes the bonding states (shifting to lower en-
ergies) to localize on the anion sites, whereas the anti-
bonding states (shifted to higher energies) localize on the
cation site (since the anion has lower s- and p-orbital en-
ergies than the cation). This repulsion-induced localiza-
tion will have important efFects on the spin-orbit splitting
which depends primarily on the degree of wave-function
localization near a given atomic site.

(vi) Since in ternary tetrahedral semiconductors the
I »-like top of the valence band (p-like) is usually repelled
upwards

top 117i4 Td
(This)Tj-l0.8 Tf
57.33 549.44 Td
(IWielled)
(This)Tjing





SU-HUAI WEI AND ALEX ZUNGER 39

TABLE VII. Calculated semirelativistic LDA band
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rameters need to be established through total-energy
minimization. In addition to the unit-cell lattice vectors,
the ternary A „84 „C4 structures of Fig. 1 have cell-
internal structural parameters which determine the equi-
librium bond lengths R z c and R~ z and the bond angles.
We have minimized for Ga4As„Sb4 „ the total energy of
each of the ordered structures, with respect to both the
unit-cell lattice parameters and the cell-internal degrees
of freedom. The resulting equilibrium structural parame-
ters are given in Table IX. We see that the cubic lattice
constants of these ordered compounds follow closely
Vegard's rule, i.e., a,'q' = —,'[na, „(AC)+(4 —n)a,q(BC)].
In contrast, bond lengths do not average, but instead ex-
hibit a bimodal distribution' ' whereby the Ga—As and
Ga—Sb bond lengths in the ternary compounds are
closetructural
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2.5—

2.0—

I „(L )

CuPt

(d)

1.98; X] 1.43

1.81; Llc
1.09

0.81
JI

GaAs GaSb
(a) (b)

2.30 X3c

CuAu

(c)
1.„(X,)-

1.71
I4 (X~)

0.86 1-, (1-,)-
ii

[111]direction; see Fig. 1), we will compare their energy
levels to the well-center and well-bottom energies of Fig.
5, to discuss wave-function localization. Note that for
lattice-mismatched system like Cxa(As, Sb), the energy
alignment of Fig. 5 pertinent to thick superlattices will be
modified for ultrathin superlattice, particularly for those
conduction states which are sensitive to the
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TABLE XI. LDA and LDA-corrected band energies with respect to the valence-band maximum (in eV) of the three ordered
Ga4As2Sb2 structures at I .

ZB
label State

Ga4As2Sb~ (CA)
LDA

corrected State

Ga~As2Sb2 {CH)
LDA

corrected State

Ga4As2Sb2 (CP)
LDA

LDA corrected

I is.
~lsv
r„
Xs„
X),
X3,
L3v
Lj,

I s„
r„,
r„
r,.r„
I4,

0.0'
—0.09
—0.316
—2.76

1.42
1.03

0.0'
—0.09

0.86
—3.09

1.98
1.71

r„,
r„
r„
r„
I3,
I2,

—0.01
0.0'

—0.050
—2.57

1.23
1.14

—0.01
0.0'
1.13

—2.90
1.79
1.82

0.0'
—0.23
—0.781

—1.51
—0.90

0.0'
—0.23

0.37

—1.74
—1.79

'Valence-band maximum.

TABLE XII. LDA and LDA-corrected band energies with respect to the valence-band maximum (in eV) of the three ordered
A1~Ga2As4 structures at I .

A12Ga2As4 (CA) A12Ga2As4 (CH) A1~Ga2As4 (CP)
ZB

label

I is.
~1svr„
Xs,
X),
X3,
L3,
Li,

State
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small (L„)—(I „) energy denominator of 0.49 eV.
Hence, the I „(I „) wave-function amplitude is
enhanced significantly on the GaAs sublattice [Fig.
11(a)]. This leads to "indirectness in real space" whereby
the I 3, VBM is localized preferentially on VaSb, whereas
the 1 &, CBM is localized on the GaAs sublattice.

The upward shift of the VBM (by 0.19 eV) and the
downward shift of the CBM (by 0.605 eV) leads to a very
large bowing coefficient of 4(0.19+0.605) =3.18 eV. The
large crystal-Geld splitting leads to different localization
patterns: while the I 3, (1 i~, ) state [Fig. 11(b)] is local-
ized preferentially on Sb, the I i„(I », ) state [Fig. 11(c)]
has a preferred localization on As. Compared with the
binaries, the total charge density at the VBM [Fig. 11(d)]
is, however, more localized on Sb.

4. General trend for bowing
in ordered GaSb-GaAs compounds

We see that because of the different identities of the re-
pelling states and the different symmetry properties, the

bowing coefficients for Ga4As„Sb4 „depend strongly on
the crystal structure with b(CP) &b(CA) &b(CH). Simi-
larly, we find b(L) & b(F) for n =1,3 luzonite and famatin-
ite structures. In all cases we find that the top of valence
band at I tends to localize on the Sb sublattice and that
the bottom of conduction band tends to localize on the
As sublattice.

Since the differences (I i, ) —(Xi, ) and ( I i, )
—(L„) in the average energies (Fig. 3) as well as
( I », }—(X5„) and (1,5, ) —(L3„)depend on composi-
tion weakly and linearly, we find that b (X„)is only weak-

ly composition dependent for the structures with the
(0,0, 1) ordering vector (i.e., the ordered CuAu-I-like and
"luzonite"-like structures). We find that b (X„)is slightly
larger in As-rich compounds since the energy difference
(I I, ) —(Xi, ) is slightly smaller in the As-rich side re-

gion (Fig. 3). The larger bowing of the two famatinite
structures relative to the chalcopyrite structure is due to
symmetry-allowed coupling between the X-derived and
I -derived I state (Table II).

(a) i
GaqAsSb (CA) i

(a)
~

GasAsab (CH)(

[I 4C (I qC)]
F1C (I 1C)

A;)

Itsy (I ~sv) I

[I sv (I 4sv) (

(c)

As I
SbE 3. As

(I 4v(I 4sv)I )r4v (I csv)[

~

I sv + I 4v ] Psy+I 4y

EGa

FICx. 9. Electronic charge-density contour plot of Ga2AsSb
in CuAu-I-like structure (in units of 10 e/a. u. ) for (a) the I „
(I I, ) state, (b) the I 5, (I », ) state, (c) the I 4, (I », ) state, and
(d) the weighted sum of (b) and {c).

FICx. 10. Electronic charge-density contour plot of Csa2AsSb
in chalcopyrite structure {in units of 10 e/a. u. ') for (a) the I „
(I I, ) state, (b) the I 5„(I», ) state, (c) the I &, (I », ) state, and
(d) the weighted sum of (b) and (c).
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IGa2Assb (CP))
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j,// (((rr'

/i' I(j' Ga

)~1C (t 1C) I

Since GaAs, GaSb, and their alloys are direct-gap ma-
terials (cf. Fig. 3), folding of X states in the ordered ter-
nary compounds does not change this basic situation.
This is not the case in A1As-GaAs alloys, as discussed
next.

E. Ordered GaAs-AlAs compounds

'=.10/,

(b)

Ga

~Sb)

Ga &, =-== 20&--10-

I&3v (&i5v)I

Figure 12 depicts the LDA-corrected energy levels at
1 for GaAIAsz in the CuAu-I-like [Fig. 12(a)], chalcopy-
rite [Fig. 12(b)], and CuPt-like [Fig. 12(c)] structures,
along with the energy levels of the binary constituents
from which folding occurs. Table XV gives the angular-
momentum decomposition of the wave functions at I .

We find for this system that the VBM shows only
negligible level repulsion and localization eA'ects since Ga
and Al have very similar p-orbital energies (Table IV).
Therefore, the optical bowing for this system is almost
entirely due to the bowing of the conduction states.

1. CuAu-I

b)

+riv
I

FIG. 11. Electronic charge-density contour plot of Ga&AsSb
in CuPt-like structure (in units of 10 e/a. u. ) for (a) the I &,

(I"&, ) state, (b) the I 3, (I"», ) state, (c) the I „(I», ) state, and
(d) the weighted sum of (b) and (c).

The I &, (I 1, ) state is repelled downward by I"
&, (X3, )

by 0.152 eV. The bowing coe%cient for this transition is,
therefore, 4X0.152=0.61 eV. Since Ga has a more
tightly bound s orbital than Al (Table IV), the I „(I„)
state tends to localize on the GaAs sublattice. The I 4,
(X„) state is repelled upward by I 4„(I », ) by 0.07 eV
but is still lower in energy than the I"1, (I &, ) state.
Study of the energy levels away from the Brillouin-zone
center show the conduction-band minimum for this sys-
tem at R &, (L &, ) (at E, + 1.92 eV) is due

rr'

&The
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2. Chalcopyrite

As is the case for all other
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4

E (x)= g P„(x)e'"'[a (x)] . (14)

Clearly, the ordered CuAu-I structure forms a
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Adjustment of the tight-binding matrix elements describ-
ing this perturbation led to a good fit of the experimental
data. Ling and Miller' argued that this perturbation is
too large for perturbation theory to be valid. They have
calculated this mixing using a superposition approach,
showing that it leads b (b,o) values which are considerably
smaller than the experimentally reported values.

Our discussion above suggests that there is no rigorous
quantitative theory currently available to describe the
large nonlinear deviation of bo(x) observed in experi-
ment. " Further study on this subject both experimen-
tally and theoretically appears desirable. Since alloying
may also split the heavy-hole and light-hole states at the
VBM, crystal-field splitting should also be

split

light-holJe33 Td
(experi-)Tj
E
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a[.(X„)—a.(X„)]
ad

(A4)
dc/dp )0 (A6)

so that E(Xi, ) —E(X3, ) is a monotonic function of d.
Combined with the discussion surrounding Eq. (A2), this
shows that

E(X„))E(X3, ) for all d )0, (A5)

in obvious conflict with other calculations (e.g. , Table
VII).

Since the pressure derivative dc. /dp has the opposite
sign of t)EIBd, Eq. (A3) also shows that

for both Xi, and X3„ in conflict with experiment (Table
VI).

Equations (Al) and our discussion provides, however,
simple guidance for understanding the order of X&, and

X3 states: for systems with sufficiently large lattice pa-
rameters (hence, sufficiently small V, ), sufficiently shal-
low anion s states and sufficiently deep cation s states X3,
will be below X&, . We find this to be the case for GaSb
and HgTe.
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