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j = 1. .. a(2N+ 1), (2) 

and the matrix elements expressed in 
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The difference between the defect and local relaxation 
problems on 
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change. 39 Self-consistent charge redistribution is al
lowed for the intermolecular and intramolecular regions, 
while in both the molecular tight binding scheme recent
ly suggested1 and in the self-consistent augmented
plane-wave (APW) method, 40 only the intramolecular 
and atomic sphere regions, respectively, are self-con
sistently treated. Spherical averaging of the potential 
within each molecule1 is unnecessary in the SPC method, 
and the directionality of the chemical bonds in the mo
lecular crystal is automatically preserved. 

The convergence problems that have to be studied in 
this scheme are 

(a) Number of grid points in K space used to reeval
uate the charge density matrix [Eq. (9)] in a given iter
ation; 

(b) Number of neighbors included in the evaluation of 
the F .. n.>.m and S .. n.).m elements [the value of Rc in Eq. 
(3) J; 

(c) Number of self-consistency iterations used to con
verge either the density matrix or the band structure. 
Owing tq computational difficulties with larger basis 
sets, the convergence of the sum in Eq. (1) as a func
tion of the number of basis orbitals used will not be ex
amined, and a valence basis set will be used throughout. 

It should be mentioned that the two convergence prob
lems (a) and (b) could be reduced to one in this scheme 
by taking the largest interaction radius R. permitted for 
a given size of the central BVK cell. In this way, the 
number of interactions and the number of K values used 
are determined uniquely by the cluster size. 

Other self-consistent schemes for energy-band calcu
lations employing a reciprocal-space rather than a di
rect real-space representation have been attempted in 
recent years, within the APW approach,40 the orthogo
nalized-plane-wave (OPW) approach, 41 and the tight-bind
ing .approach. 39 However, none of these methods have 
previously been applied to both perfect lattices and de
fect problems, these being treated at different levels of 
approximations. Point defect properties have been 
treated either with various perturbative schemes based 
on the zero order lattice periodic states42 or by the lo
cal orbitals surrounding the defect site, neglecting the 
rest of the lattice. 43 The first approach, being pertur
bative, fails to treat lattice relaxations around the defect 
site that introduce marked changes in the electronic 
structure. Only limited information regarding the 
charge distribution around the defect site has been ob
tained by this method. The second approach, consider
ing only the local environment of the defect, does not 
account for the coupling of the defect with the bulk crys
tal through delocalization effects and fails to relate the 
defect levels with the structn.
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TABLE II. Calculated values for the most stable HF dimer 
compared with experimental data. Eo denotes the ground state 
Hartree-Fock monomer total energy. e 

state 
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FIG. 4. Dependence of the final Hartree-Fock diagonal matrix 
elements on the interaction order, a=1.57 A, d=0.92 A, and 
Ci =180 0

• The K sun and the SCF interaction cycles are con
vergent. The value of the corresponding elements in the iso
lated HF molecule with d= O. 92 A are indicated. 

We next examine the interaction radius convergence 
problem. The band structure is now calculated for the 
largest cluster (HF)20 employing 

employing 

the 0ying 
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region. A similar calculation on the (HF>S fragment 
[Fig. 7 (b)] shows that the potential differences are 
markedly changed at the end F-H ••• F segment from 
those in the corresponding (HF)zo case, indicating that 
charge rearrangement in the A-H ••• B mOiety depends 
also on more distant atoms in the structure. Thus, 
models that consider only A-H, B-H, and A-B inter
actions l9, 20 are inadequate for a realistic description of 
phenomena in such (A-H-B)n hydrogen-bonded systems. 
Similar conclusions were suggested by Morakuma and 
Petersonn and by Kollman and Allen. 73 The redistribu
tion effects. manifested by the HF chain are qualitatively 
similar to those calculated by Kollman and Allenl'lbfrom 
their HF-dimer charge-difference maps, although edge 
effects are probably very marked in their highly trun
cated (HF)2 system. 

Tight-binding calculationsl that generate 
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FIG. 8. Fluorine net atomic charges as a function of position 
along the nonperiodic (HF)n chain for n= 9, 11, 13, and 15. 
Experimental structure (a=1.57 A, d=0.92 A, and 0' =120°) 
is assumed. 

F-H.··F bond in crystals and polymers have previously 
been investigated on truncated-crystal models using 
(HF)6 clustersl6, 18,24 and (HF)s clusters. 17a The valid
ity of the truncated-crystal model for hyF Tm
(for )Tj68Tj
EMC 
ET
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line with the tendency of the INDO method (see Table 
II) to overestimate the intermolecular binding energies 
significantly. 

A full optimization of the structure relative to all the 
out-of-plane angles of the molecules in the crystal and 
a, a, and d independently, reveals at equilibrium a fully 
planar structure with a =d = 1.125 A, a = 122 0

, and 
6.E = 29.5 kcal/mole. In view of the strong tendency of 
the INDO method to underestimate the intermolecular 
bond length and to overestimate the intermolecular 
cohesive energies, it seems that the results of the full 
optimization are unlikely to be correct and that attention 
should be focused on the trends obtained, rather than on 
the absolute configuration deduced. Nevertheless, it is 
instructive to observe the effects introduced by polar
ization and charge transfer on the equilibrium geometry 
and charge distribution in the solid. For this purpose, 
we calculate the cohesive energy in the following three 
approximations: 

(a) First-order perturbation theory using the isolated 
HF molecule wavefunction as zero-order vectors to yield 
the stabilization energy E(1); 

(b) SCF theory for the periodiC structure with intra
molecular bond length fixed at the isolated molecule 
value. The stabilization energy is denoted ESCF ; 

(c) SCF theory for the periodic structure with opti
mization of the intramolecular bond length at each inter
molecular separation. The stabilization energy is de
noted E~~lF' and the optimization procedure indicated 
in Eq. 15 is in 

in in 

8m3.211 i s  A
BT
 /Sus 
 /T1<</Conf  0  >>BDC 
 /T1_0 1  T07 0  568.3001 24568.3002536 Tm2621812 Tcspect <</Conf 0 >>BDC 
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FIG. 14. Band structure of a linear HF crystal: -, optimized 
structure; a=1.475 A, d=1.015 A; ---, unoptimized structure; 
a=1.57 A, d=O.92 A. 

electron repulsion effects [second term in Eq. (6)J tend 
to destabilize the optimized structure. The 4a conduc
tion band is lowered in the optimized structure due to 
a decrease in its antibonding character. The main 
effects of stabilization and destabilization oCCur at the 
zone center, while at the edges of the BZ, modifications 
in the bands are less pronounced. The optimized struc
ture is more polar than the unoptimized one owing to a 
larger charge-transfer accompanying its stabilization. 

The intramolecular stretching force constants in the 
HF crystal were computed by Kittelberger and Hornig62 

in an F - G scheme using the observed ir active stretch
ing vibrational frequencies (antisymmetric mode-3400 
cm-!, symmetric mode-3061 cm-!, isolated molecule 
value-4138 cm-!). The symmetry-adapted force con
stants thus calculated were 6. 5x 105 dyn/cm and 5. 3 x 105 

dyn/cm for the antisymmetric and symmetric vibration 
stretchings, respectively, compared with 9.6 x 105 

dyn/cm for the isolated molecule. We calculated 
stretching force constants by obtaining numerical de
rivatives of the potential energy corresponding to anti
symmetric and symmetric collective proton displace
ments, in the vicinity of the calculated equilibrium. 
This yielded 7.2 X 105 dyn/ cm and 6. 1 x 105 dyn/ cm for 
the antisymmetric and symmetric stretching force 
constants, respectively, compared with 10.5 x 105 dyn/ 
cm for the isolated molecule. Thus, the clear decrease 
in stretching force constants upon hydrogen-bond forma
tion is reproduced. 

The dependence of the RHF distance on the RFF dis
tance at static equilibrium in the linear chain with 
a = 180 0 is plotted in Fig. 15. The region where RHF 

is a decreasing function of RFF is characterized by an 
asymmetric double minimum in the proton potential, 
while the region where RHF =RFF/2 is characterized by 
a symmetric single well potential. The transition be
tween these two regions is difficult to establish accu
rat ely , owing to the 
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(1) Conventional tight-binding calculations employing 
unperturbed free-molecule charge densities 
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