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speciflcally refers to non{cooperative bargaining games. However, the solution
concepts he employs all rely on backward induction. Thus, if the bargaining
game has a unique equilibrium which survives backward induction, there is no
way that sunk costs can afiect the bargaining outcome. This is the natural
starting point of our paper, which asks the following two questions:

•



(1993) and Binmore and Samuelson (1999), has made clear that evolution
may not always favor subgame perfect equilibria. Evidence from bargaining
experiments has also cast doubt on the predictive power of subgame perfec-
tion. To examine this issue, we also analyse a very simple bargaining game
with a unique subgame perfect equilibrium, namely, an ultimatum game in
which the investor can only accept or reject the proposal made by the trading
partner. For believers in subgame perfection, this game provides the starkest
possible example of a hold{up problem: The investor should accept any ofier,
no matter how meager, hence the trading partner should demand (virtually)
the whole surplus, and consequently the investor should make (virtually) no
investment. While this outcome is stochastically stable, so is almost any other
outcome, including the e–cient investment level.

Although these are two speciflc examples of bargaining games, the results
suggest that a general principle might be at work: When there is no ten-
sion between e–ciency and subgame perfection, stochastic stability not only
picks some e–cient outcome, but also selects a unique such outcome. On the
other hand, when e–ciency and subgame perfection are in con°ict, stochas-
tic stability has little cutting power. If this is indeed a general feature, the
two bargaining games we study represent opposite extremes, and evolutionary
analysis of the hold{up problem using other non{cooperative bargaining games
is bound to admit e–cient investment too.

While our analysis is evolutionary, the results can be given a rationalistic
interpretation using the concept of forward induction. The reason why the
investor is able to capture a share of the surplus that is su–cient to cover sunk
costs is that the trading partner believes that it will not pay to be more greedy.
After all, there are only two possible reasons why the investment was under-
taken. Either the investor expected coordination on a favorable equilibrium
or he made a mistake. The forward induction argument says that the trading
partner should try to square the observed action with rational behavior; hence
the trading partner should act in accordance with an equilibrium which makes
the observed level of investment ex post rational for the investor. In a com-







is smaller; it contains only the elements DA = {V (I) − x; V (I)}, where the
flrst element is equivalent to accepting B’s ofier and the second element is
equivalent to rejecting it. However, the smaller set of demands for A is not
an important difierence between the two games. It would not matter much
if we allowed player A to choose any demand in D; the essential distinction
between the two bargaining games is that B has a flrst{mover advantage in
the ultimatum game. For player A a pure strategy for the whole game is a
now pair (I; y(x)), i.e., A’s demand is a function y : D → D rather than a real
number.

Before turning to the evolutionary analysis, let us consider the subgame
perfect Nash equilibria. When the investment decision is followed by the Nash
demand game, there is a vast multiplicity of subgame perfect equilibria. In par-
ticular, there are subgame perfect equilibria sustaining flrst{best investment.
To take one example, suppose A plays the strategy (I = I∗ I





the two games, so is the state space.) With each state µ there is an associated
probability distribution of terminal nodes, denoted z(µ).

Beliefs and strategies evolve in two difierent ways; by adaptation to the
current environment and by random mutation. Adaptation occurs in the fol-
lowing way. Every period each agent has an i.i.d. chance of rationally updating
his beliefs and strategy. This is called an updating draw. An updating agent
observes z(µ), updates his beliefs based on this observation (beliefs following
decision nodes not reached in state µ are unchanged) and chooses a best re-



Proposition 2 allows us to speak about equilibria rather than absorbing sets
from now on. Let „£ be the set of equilibria.

Before getting to the more substantial results, we need to be more precise
about our deflnition of local stability. The basin of attraction of an equilibrium
µ, denoted B(µ), is the set of states µ′ such that the population can get from
µ′ to µ without mutation. Similarly, we say that µ′ is in the single mutation
neighborhood of µ, denoted µ′ ∈M(µ), if µ′ and µ difier by a single mutation. A
union of equilibria, X, is a mutation connected set if for all pairs of equilibria
µ1,µn ⊂ X, there exists some ordering of the remaining equilibria, (µ2; :::; µn−1),
such that for all k = 1; :::; n; M(µk) ∩ B(µX µ







we can show that r̂(x) > r(x) whenever x > xL (see Appendix), it is easy to
construct a minimum resistance tree. The case xM > xNBS essentially reduces
to the analysis of the Nash demand game in Young (1993b). Otherwise, if
r̂(xL) ≥ r(xL − –); the minimum resistance tree is given by

– −→ 2– −→ ::: −→ xL − – −→ xL;

while if r̂(xL) ≥ r(xL − –), the minimum resistance tree is given by

xL −→ – −→ 2– −→ ::: −→ xL − –:



investment, then there must be investment in any stable equilibrium.8

Suppose now that bargaining is conducted according to the rules of the
ultimatum game instead. Let IH be such that V (IH) − IH





investment I is made, let all agents in the flrst population update, they now
believe that demand V (I) − zl is not made, and consequently will not make
demand zl. Hence these two demands have dissapeared and can not reappear,
which contradicts the assumption that Q is an absorbing set. Since Ml and Nl

can’t decrease, (I; yl) is a best response and xl is a best (behavioral) response
following I





to get following an investment of Î, which will lead them to play (following
updating) (Î ; V (Î) − –). As above, an application of Lemma 4 completes the
proof.

Step (ii): Consider some µ with ‰(µ) = {(I∗; y; x)}, and x ≤ xL. We must
show that a single mutation can only move the population to a state µ1 with
‰(µ1) = ‰(µ). Note flrst that for I 6= I∗, V (I) − – − I ≤ V (Î) − – − Î <
(V (I∗) − xL)(N − 1)=N − I∗ ≤ (V (I∗) − x)(N − 1)=N − I∗. Hence, agents
in Population A ¡ x)( µ¡x

x )
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Proof: Immediate from Lemmas 11 and 4. 2

Note that of course if two outcomes give the same payofi to A, higher than
that given by the hold{up equilibrium, then there are equilibria in which both
outcomes are present. The above lemma is more a statement about the richness
out equilibria, not a restriction. The latter is the job of the previous lemma.

Proof of Proposition 5: From Lemmas 11, 12 and 13 we know that this is the
unique locally stable set, which Samuelson (1994) has shown must equal the
stochastically stable set. 2
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