Applied Analysis Preliminary Exam

10.00am-1.00pm, August 21, 2018

Instructions. You have three hours to complete this exam. Work all five problems. Please start each problem on a new page. Please clearly indicate any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you may use any major theorem on the syllabus or discussed in class, unless you are directly proving such a theorem (when in doubt, ask the proctor). Write your student number on your exam, not your name. Each problem is worth 20 points. (There are no optional problems.)

Problem 1:

- (a) Assume that a function $f : \mathbb{R}^n$ R is continuously di erentiable. Suppose that for all $x, y \in \mathbb{R}^n$, defining the functions g(t) = f(tx + (1 t)y) and h(t) = tf(x) + (1 t)f(y), it holds that (g h) is monotonically increasing for t = [0, 1]. Prove that f is convex, i.e., g(t) = h(t) = t = [0, 1].
- (b) Let $\mathbf{F} : \mathbb{R}^3$ R³ be continuously di erentiable, and suppose that on an open ball U containing 0, we have $\times \mathbf{F} = 0$.
 - (1) Let $\mathbf{x} = \int_{0}^{\mathbf{x}} \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{x} = U$. We haven't specified the path from 0 to \mathbf{x} . Is well-defined? Justify your answer.
 - (2) Show that for arbitrary points **x** and **y** in U, $\stackrel{\mathbf{x}}{\mathbf{y}}(\mathbf{r}) \cdot d\mathbf{r} = \stackrel{\mathbf{x}}{\mathbf{y}} \mathbf{F} \cdot d\mathbf{r}$. (This lets

(a)