
APPM 1360 Exam 3 Solutions July 11, 2022

1. Determine if the series converge or diverge. Be sure to fully justify your

answer and state what test that you used.
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Solution: (a) We apply the divergence test to this series:
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(c) We apply the root test to this series:
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Since 1
3
< 1, the series absolutely converges by the root test.

2. Determine the interval of convergence and the radius of convergence for the

following power series.
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Solution: (a) By inspection, we see that the center of this power series is a = 0. We can

apply the ratio test to this series to determine its radius of convergence

and interval of convergence:
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For this series to absolutely converge, we require that

3 jxj < 1 =) �1 < 3x < 1
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From this, we see that the radius of convergence is R = 1
3

and that the

tentative interval of convergence is I =
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At this endpoint, the series evaluates to
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This is an alternating series, where the positive portion of the terms

are given by bn = 1
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3. (a) 10 points) Start with the Maclauren Series for 1
1�x to �nd a power series

representation for 1
1+2x2 . Show all work.

(b) (8 points) Use your answer from part (a) to �nd its interval of conver-

gence.

Solution:

(a) 1
1+2x2 = 1

1�(�2x2)
) =)


